Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antivir Ther ; 4(4): 203-9, 1999.
Article in English | MEDLINE | ID: mdl-10723499

ABSTRACT

We have tested both wild-type and drug-resistant mutated, recombinant human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) molecules for sensitivity to each of two non-nucleoside RT inhibitors (NNRTI), (+)-calanolide A and nevirapine, in primer extension assays. We found that RT containing either the V106A or Y181C substitutions, associated with NNRTI resistance, displayed approximately 90-fold resistance to nevirapine but remained fully sensitive to (+)-calanolide A and that the Y181C mutation marginally enhanced susceptibility to the latter drug. In contrast, the Y188H substitution in RT resulted in about 30-fold resistance to (+)-calanolide A in these assays but did not result in diminished sensitivity to nevirapine. Tissue culture results indicated that the combination of (+)-calanolide A and nevirapine possessed an additive to weakly synergistic effect in blocking replication of HIV-1 in tissue culture. These results suggest that (+)-calanolide A and nevirapine might have rationale as a combination therapy for HIV disease.


Subject(s)
Coumarins/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/genetics , HIV-1/enzymology , Reverse Transcriptase Inhibitors/pharmacology , Drug Resistance , HIV-1/drug effects , Mutation , Nevirapine/pharmacology , Pyranocoumarins , Virus Replication/drug effects
2.
Biochemistry ; 36(11): 3179-85, 1997 Mar 18.
Article in English | MEDLINE | ID: mdl-9115994

ABSTRACT

HIV-1 reverse transcriptase (RT) is multifunctional, with RNA-dependent DNA polymerase (RDDP), DNA-dependent DNA polymerase (DDDP), and ribonuclease H (RNase H) activities. N-(4-tert-Butylbenzoyl)-2-hydroxy-1-naphthaldehyde hydrazone (BBNH) inhibited both the polymerase and the RNase H activities of HIV-1 RT in vitro. IC50 values for inhibition of RDDP were 0.8-3.4 microM, depending on the template/primer (T/P) used in the assay. The IC50 for DDDP inhibition was about 12 microM, while that for inhibition of RNase H was 3.5 microM. EC50 for inhibition of HIV-1 replication in cord blood mononuclear cells was 1.5 microM. BBNH inhibition of RNase H in vitro was time-dependent, whereas inhibition of RT polymerase activities was immediate. BBNH was a linear mixed-type inhibitor of RT RDDP activity with respect to both T/P and to dNTP, whereas BBNH inhibition of RT RNase H activity was linear competitive. Protection experiments using an azidonevirapine photolabel showed that BBNH binds to the non-nucleoside RT inhibitor (NNRTI) binding pocket. Importantly, the compound inhibited recombinant RT containing mutations associated with high-level resistance to other NNRTI. While BBNH did not inhibit the DNA polymerase activities of other retroviral reverse transcriptases and DNA polymerases, the compound inhibited Escherichia coli RNase HI and the RNase H activity of murine leukemia virus RT. BBNH also inhibited HIV-1 RT RNase H in the presence of high concentrations of other non-nucleoside inhibitors with higher affinities for the NNRTI binding pocket, and of RT in which the NNRTI binding pocket had been irreversibly blocked by the azidonevirapine photolabel. We conclude that BBNH may therefore bind to two sites on HIV-1 RT. One site is the polymerase non-nucleoside inhibitor binding site and the second may be located in the RNase H domain. BBNH is therefore a promising lead compound for the development of multisite inhibitors of HIV-1 RT.


Subject(s)
DNA Replication/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/physiology , Hydrazones/pharmacology , Naphthols/pharmacology , Nucleic Acid Synthesis Inhibitors , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H/antagonists & inhibitors , Cell Division/drug effects , Cell Line , Fetal Blood , HIV-1/drug effects , Humans , Kinetics , Mutagenesis, Site-Directed , Point Mutation , Recombinant Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...