Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Ecol ; 30(3): 656-669, 2021 02.
Article in English | MEDLINE | ID: mdl-33247971

ABSTRACT

Predicting the potential fate of a species in the face of climate change requires knowing the distribution of molecular adaptations across the geographic range of the species. In this work, we analysed 79 genomes of Theobroma cacao, an Amazonian tree known for the fruit from which chocolate is produced, to evaluate how local and regional molecular signatures of adaptation are distributed across the natural range of the species. We implemented novel techniques that incorporate summary statistics from multiple selection scans to infer selective sweeps. The majority of the molecular adaptations in the genome are not shared among populations. We show that ~71.5% of genes under selection also show significant associations with changes in environmental variables. Our results support the interpretation that these genes contribute to local adaptation of the populations in response to abiotic factors. We also found strong patterns of molecular adaptation in a diverse array of disease resistance genes (6.5% of selective sweeps), suggesting that differential adaptation to pathogens also contributes significantly to local adaptations. Our results are consistent with the interpretation that local selective pressures are more important than regional selective pressures in explaining adaptation across the range of a species.


Subject(s)
Cacao , Chocolate , Acclimatization , Cacao/genetics , Climate Change , Selection, Genetic , Trees
2.
BMC Genomics ; 21(1): 332, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32349675

ABSTRACT

BACKGROUND: Recombination plays an important evolutionary role by breaking up haplotypes and shuffling genetic variation. This process impacts the ability of selection to eliminate deleterious mutations or increase the frequency of beneficial mutations in a population. To understand the role of recombination generating and maintaining haplotypic variation in a population, we can construct fine-scale recombination maps. Such maps have been used to study a variety of model organisms and proven to be informative of how selection and demographics shape species-wide variation. Here we present a fine-scale recombination map for ten populations of Theobroma cacao - a non-model, long-lived, woody crop. We use this map to elucidate the dynamics of recombination rates in distinct populations of the same species, one of which is domesticated. RESULTS: Mean recombination rates in range between 2.5 and 8.6 cM/Mb for most populations of T. cacao with the exception of the domesticated Criollo (525 cM/Mb) and Guianna, a more recently established population (46.5 cM/Mb). We found little overlap in the location of hotspots of recombination across populations. We also found that hotspot regions contained fewer known retroelement sequences than expected and were overrepresented near transcription start and termination sites. We find mutations in FIGL-1, a protein shown to downregulate cross-over frequency in Arabidopsis, statistically associated to higher recombination rates in domesticated Criollo. CONCLUSIONS: We generated fine-scale recombination maps for ten populations of Theobroma cacao and used them to understand what processes are associated with population-level variation in this species. Our results provide support to the hypothesis of increased recombination rates in domesticated plants (Criollo population). We propose a testable mechanistic hypothesis for the change in recombination rate in domesticated populations in the form of mutations to a previously identified recombination-suppressing protein. Finally, we establish a number of possible correlates of recombination hotspots that help explain general patterns of recombination in this species.


Subject(s)
Cacao/genetics , Genetic Variation , Recombination, Genetic , Domestication , Evolution, Molecular , Genetics, Population , Genome, Plant , Linkage Disequilibrium , Models, Genetic , Mutation , Nucleotide Motifs , Plant Proteins/genetics
3.
Commun Biol ; 1: 167, 2018.
Article in English | MEDLINE | ID: mdl-30345393

ABSTRACT

Domestication has had a strong impact on the development of modern societies. We sequenced 200 genomes of the chocolate plant Theobroma cacao L. to show for the first time to our knowledge that a single population, the Criollo population, underwent strong domestication ~3600 years ago (95% CI: 2481-13,806 years ago). We also show that during the process of domestication, there was strong selection for genes involved in the metabolism of the colored protectants anthocyanins and the stimulant theobromine, as well as disease resistance genes. Our analyses show that domesticated populations of T. cacao (Criollo) maintain a higher proportion of high-frequency deleterious mutations. We also show for the first time the negative consequences of the increased accumulation of deleterious mutations during domestication on the fitness of individuals (significant reduction in kilograms of beans per hectare per year as Criollo ancestry increases, as estimated from a GLM, P = 0.000425).

5.
Front Plant Sci ; 9: 808, 2018.
Article in English | MEDLINE | ID: mdl-29971076

ABSTRACT

A comprehensive understanding of the genetic basis of target traits in any crop is critical to design breeding strategies for the development and release of new improved varieties. In this study, 34 cacao families were evaluated for vigor and yield related traits over the course of 6 years in Costa Rica. Linear mixed models provided the variance components for the partitioning of additive and non-additive effects. Heritabilities of yield over time ranged from 0.085 to 0.576, from 0.127 to 0.399 for vigor, and 0.141 to 0.146 for disease resistance traits. Significant (p < 0.001) general combining abilities were observed for ICS-43 and LcTeen-37 with negative effect on average yield (-0.674, -0.690), respectively. Specific combining abilities for yield had significant (p < 0.001) positive effect from the cross GU-154-L x UF-273 Type 2 (0.703) and strong negative interaction between ICS-43 and LF-1 (-0.975). A weighted index was used to select the top performers while providing the corresponding genetic gains. At an 1% selection intensity, yield component gains ranged from 17.8 to 331.9%. Agronomic traits such as branch angle, trunk diameter and jorquette height had lower genetic gains and lower heritabilities. In addition, the parents in this study were genotyped with a 96-SNP marker off-typing set and a significant positive correlation of 0.39 (p = 0.019) was found between genetic distance and specific combining abilities for yield. Preliminary comparison of clonal parents vs. seedlings yield in the family with the highest SCA suggest for the first time presence of heterobeltiosis in cacao.

6.
Front Plant Sci ; 9: 343, 2018.
Article in English | MEDLINE | ID: mdl-29662497

ABSTRACT

Cacao (Theobroma cacao) is a globally important crop, and its yield is severely restricted by disease. Two of the most damaging diseases, witches' broom disease (WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi: Moniliophthora perniciosa and Moniliophthora roreri, respectively. Resistant cultivars are the most effective long-term strategy to address Moniliophthora diseases, but efficiently generating resistant and productive new cultivars will require robust methods for screening germplasm before field testing. Marker-assisted selection (MAS) and genomic selection (GS) provide two potential avenues for predicting the performance of new genotypes, potentially increasing the selection gain per unit time. To test the effectiveness of these two approaches, we performed a genome-wide association study (GWAS) and GS on three related populations of cacao in Ecuador genotyped with a 15K single nucleotide polymorphism (SNP) microarray for three measures of WBD infection (vegetative broom, cushion broom, and chirimoya pod), one of FPRD (monilia pod) and two productivity traits (total fresh weight of pods and % healthy pods produced). GWAS yielded several SNPs associated with disease resistance in each population, but none were significantly correlated with the same trait in other populations. Genomic selection, using one population as a training set to estimate the phenotypes of the remaining two (composed of different families), varied among traits, from a mean prediction accuracy of 0.46 (vegetative broom) to 0.15 (monilia pod), and varied between training populations. Simulations demonstrated that selecting seedlings using GWAS markers alone generates no improvement over selecting at random, but that GS improves the selection process significantly. Our results suggest that the GWAS markers discovered here are not sufficiently predictive across diverse germplasm to be useful for MAS, but that using all markers in a GS framework holds substantial promise in accelerating disease-resistance in cacao.

7.
Front Plant Sci ; 9: 155, 2018.
Article in English | MEDLINE | ID: mdl-29491879

ABSTRACT

Cacao is an important crop, its beans are key raw materials for the chocolate and cosmetic industries. Ceratocystis wilt of cacao (CWC) caused by Ceratocystis cacaofunesta is a lethal disease for the crop. Therefore, the selection of resistant cacao varieties is one of the viable ways to minimize losses in cacao production. In this paper, we described the identification of a major QTL associated with CWC in an F1 mapping population from a cross between a resistant, "TSH 1188," and a susceptible genotype, "CCN 51." A set of 266 trees were genotyped using 3,526 single nucleotide polymorphic markers and then multiple QTL mapping analyses were performed. Two QTLs were identified on chromosomes IV and VI. The major QTL was located at 20 cM from the top position of chromosome VI, accounting for more than 60% of the phenotypic variation. The favorable allele T1, with haplotype GTT, came from the "TSH 1188" parent. It was evident that the haplotype combination T1C2 on chromosome VI was the most significant for resistance, since 93% of resistant trees had this haplotype. The major QTL converged to a genomic region of 739.4 kb that harbored nine candidate genes, including two major classes of resistance genes, which would make them the primary candidates involved in the resistance to CWC. The haplotypes detected are now used to improve the efficiency and precision of the selection of resistant trees in cacao breeding.

8.
Front Plant Sci ; 8: 2008, 2017.
Article in English | MEDLINE | ID: mdl-29259608

ABSTRACT

Cacao (Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.

9.
Front Plant Sci ; 8: 2059, 2017.
Article in English | MEDLINE | ID: mdl-29250097

ABSTRACT

Breeding programs of cacao (Theobroma cacao L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis. Three separate analyses (multisite, single site with and without off-types) were performed to estimate genetic parameters from statistical models fitted on nine important agronomic traits (yield, seed index, pod index, % healthy pods, % pods infected with witches broom, % of pods other loss, vegetative brooms, diameter, and tree height). Genetic parameters were estimated along with variance components and heritabilities from the multisite analysis, and a trial was fingerprinted with low-density SNP markers to determine the impact of off-types on estimations. Heritabilities ranged from 0.37 to 0.64 for yield and its components and from 0.03 to 0.16 for disease resistance traits. A weighted index was used to make selections for clonal evaluation, and breeding values estimated for the parental selection and estimation of genetic gain. The impact of off-types to breeding progress in cacao was assessed for the first time. Even when present at <5% of the total population, off-types altered selections by 48%, and impacted heritability estimations for all nine of the traits analyzed, including a 41% difference in estimated heritability for yield. These results show that in a mixed model analysis, even a low level of pedigree error can significantly alter estimations of genetic parameters and selections in a breeding program.

10.
Front Plant Sci ; 8: 1905, 2017.
Article in English | MEDLINE | ID: mdl-29184558

ABSTRACT

Chocolate is a highly valued and palatable confectionery product. Chocolate is primarily made from the processed seeds of the tree species Theobroma cacao. Cacao cultivation is highly relevant for small-holder farmers throughout the tropics, yet its productivity remains limited by low yields and widespread pathogens. A panel of 148 improved cacao clones was assembled based on productivity and disease resistance, and phenotypic single-tree replicated clonal evaluation was performed for 8 years. Using high-density markers, the diversity of clones was expressed relative to 10 known ancestral cacao populations, and significant effects of ancestry were observed in productivity and disease resistance. Genome-wide association (GWA) was performed, and six markers were significantly associated with frosty pod disease resistance. In addition, genomic selection was performed, and consistent with the observed extensive linkage disequilibrium, high predictive ability was observed at low marker densities for all traits. Finally, quantitative trait locus mapping and differential expression analysis of two cultivars with contrasting disease phenotypes were performed to identify genes underlying frosty pod disease resistance, identifying a significant quantitative trait locus and 35 differentially expressed genes using two independent differential expression analyses. These results indicate that in breeding populations of heterozygous and recently admixed individuals, mapping approaches can be used for low complexity traits like pod color cacao, or in other species single gene disease resistance, however genomic selection for quantitative traits remains highly effective relative to mapping. Our results can help guide the breeding process for sustainable improved cacao productivity.

11.
Genome Biol ; 14(6): r53, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23731509

ABSTRACT

BACKGROUND: Theobroma cacao L. cultivar Matina 1-6 belongs to the most cultivated cacao type. The availability of its genome sequence and methods for identifying genes responsible for important cacao traits will aid cacao researchers and breeders. RESULTS: We describe the sequencing and assembly of the genome of Theobroma cacao L. cultivar Matina 1-6. The genome of the Matina 1-6 cultivar is 445 Mbp, which is significantly larger than a sequenced Criollo cultivar, and more typical of other cultivars. The chromosome-scale assembly, version 1.1, contains 711 scaffolds covering 346.0 Mbp, with a contig N50 of 84.4 kbp, a scaffold N50 of 34.4 Mbp, and an evidence-based gene set of 29,408 loci. Version 1.1 has 10x the scaffold N50 and 4x the contig N50 as Criollo, and includes 111 Mb more anchored sequence. The version 1.1 assembly has 4.4% gap sequence, while Criollo has 10.9%. Through a combination of haplotype, association mapping and gene expression analyses, we leverage this robust reference genome to identify a promising candidate gene responsible for pod color variation. We demonstrate that green/red pod color in cacao is likely regulated by the R2R3 MYB transcription factor TcMYB113, homologs of which determine pigmentation in Rosaceae, Solanaceae, and Brassicaceae. One SNP within the target site for a highly conserved trans-acting siRNA in dicots, found within TcMYB113, seems to affect transcript levels of this gene and therefore pod color variation. CONCLUSIONS: We report a high-quality sequence and annotation of Theobroma cacao L. and demonstrate its utility in identifying candidate genes regulating traits.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Quantitative Trait, Heritable , Cacao/genetics , Cacao/metabolism , Chromosome Mapping , Chromosomes, Plant , Color , Fruit/metabolism , Genome Size , High-Throughput Nucleotide Sequencing , Quantitative Trait Loci , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
12.
PLoS One ; 3(10): e3311, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18827930

ABSTRACT

Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.


Subject(s)
Cacao/genetics , Genetics, Population , Geography , Brazil , DNA, Plant/genetics , Electrophoresis, Capillary , Microsatellite Repeats/genetics , Multigene Family , Polymerase Chain Reaction
13.
Electrophoresis ; 26(1): 112-25, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15624191

ABSTRACT

We investigated the reliability of capillary array electrophoresis-single strand conformation polymorphism (CAE-SSCP) to determine if it can be used to identify novel alleles of candidate genes in a germplasm collection. Both strands of three different size fragments (160, 245 and 437 bp) that differed by one or more nucleotides in sequence were analyzed at four different temperatures (18 degrees C, 25 degrees C, 30 degrees C, and 35 degrees C). Mixtures of amplified fragments of either the intron interrupting the C-terminal WRKY domain of the Tc10 locus or the NBS domain of the TcRGH1 locus of Theobroma cacao were electroinjected into all 16 capillaries of an ABI 3100 Genetic Analyzer and analyzed three times at each temperature. Multiplexing of samples of different size range is possible, as intermediate and large fragments were analyzed simultaneously in these experiments. A statistical analysis of the means of the fragment mobilities demonstrated that single-stranded conformers of the fragments could be reliably identified by their mobility at all temperatures and size classes. The order of elution of fragments was not consistent over strands or temperatures for the intermediate and large fragments. If samples are only run once at a single temperature, small fragments could be identified from a single strand at a single temperature. A combination of data from both strands of a single run was needed to identify correctly all four of the intermediate fragments and no combination of data from strands or temperatures would allow the correct identification of two large fragments that differed by only a single single-nucleotide polymorphism (SNP) from a single run. Thus, to adequately assess alleles at a candidate gene locus using SSCP on a capillary array, fragments should be < or =250 bp, samples should be analyzed at two different temperatures between 18 degrees C and 30 degrees C to reduce the variability introduced by the capillaries, data should be combined from both strands and both temperatures, and undenatured double-stranded (ds)DNA molecular weight standards, such as ROX 2500, should be included as internal standards.


Subject(s)
Alleles , Electrophoresis, Capillary/methods , Genes, Plant/genetics , Polymorphism, Single-Stranded Conformational , Sequence Analysis, DNA/methods , Cacao/genetics , DNA, Plant , Gene Frequency , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...