Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 37(3): 145-50, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22973081

ABSTRACT

In this study the commissioning of a dose calculation algorithm in a currently used treatment planning system was performed and the calculation accuracy of two available methods in the treatment planning system i.e., collapsed cone convolution (CCC) and equivalent tissue air ratio (ETAR) was verified in tissue heterogeneities. For this purpose an inhomogeneous phantom (IMRT thorax phantom) was used and dose curves obtained by the TPS (treatment planning system) were compared with experimental measurements and Monte Carlo (MCNP code) simulation. Dose measurements were performed by using EDR2 radiographic films within the phantom. Dose difference (DD) between experimental results and two calculation methods was obtained. Results indicate maximum difference of 12% in the lung and 3% in the bone tissue of the phantom between two methods and the CCC algorithm shows more accurate depth dose curves in tissue heterogeneities. Simulation results show the accurate dose estimation by MCNP4C in soft tissue region of the phantom and also better results than ETAR method in bone and lung tissues.

2.
J Cancer Res Ther ; 8(1): 34-9, 2012.
Article in English | MEDLINE | ID: mdl-22531511

ABSTRACT

AIMS: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS) for calculating the dose distribution parameters in conformal fields (CF). Dosimetric parameters of CF's were compared between measurement, Monte Carlo simulation (MCNP4C) and TPS calculation. MATERIALS AND METHODS: Field analyzer water phantom was used for obtaining percentage depth dose (PDD) curves and beam profiles (BP) of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. RESULTS: Results showed that the distance to agreement (DTA) and dose difference (DD) of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. CONCLUSIONS: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.


Subject(s)
Monte Carlo Method , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal , Computer Simulation , Humans , Male , Radiometry , Radiotherapy Dosage , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...