Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Med Sci ; 9(1): 126-131, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36224703

ABSTRACT

BACKGROUND: The presence of antimicrobial resistance and virulence genes in Escherichia coli allows them to survive and cause infections. The close contact between humans and pets can reinforce the risk of transmitting resistant and virulent bacteria between them. OBJECTIVES: This study aims to compare the patterns of the presence of tetracycline and streptomycin resistance genes, as well as important virulence genes in E. coli isolated from faeces of healthy dogs and their owners. METHODS: Polymerase chain reactions were performed for detection of antimicrobial resistance (tetA, tetB, tetC, tetD, strA and strB) and virulence (fimH, iss, sitA and malX) genes in 144 faecal E. coli isolates from 28 dog-owner pairs and 16 humans who did not keep any pets as controls. RESULTS: Among the investigated antimicrobial resistance and virulence genes, tetA (52.1%) and fimH (86.8%) genes had the highest prevalence. No statistically significant difference was found between the prevalence of antimicrobial resistance and virulence genes in isolates of dogs and their owners. In total, 46.4% of dog-owner pairs had the same patterns of presence or absence of six antimicrobial resistance genes, 50.0% had the same patterns of presence or absence of four virulence genes and 25.0% had the same patterns of presence or absence of all 10 tested genes. CONCLUSION: The presence of antimicrobial-resistant virulent E. coli in humans and pets may predispose them to infections that are hard to cure with conventional antibiotics. Notable frequency of dogs' and their owners' E. coli isolates with similar patterns of antimicrobial resistance and virulence genes may indicate the possibility of sharing virulent antimicrobial resistant E. coli between them.


Subject(s)
Anti-Infective Agents , Escherichia coli , Humans , Dogs , Animals , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Drug Resistance, Bacterial/genetics , Feces/microbiology
2.
Gut Pathog ; 11: 36, 2019.
Article in English | MEDLINE | ID: mdl-31320935

ABSTRACT

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of Johne's disease in all ruminants worldwide. Economic problems in dairy cattle and sheep industries, public health concern, persistence of MAP in the environment and lack of effective vaccines mentioned necessity of research about various antigens to introduce as vaccine candidates. Based on MAP pathogenesis, it seems that research about the production of new recombinant proteins to stimulate cell-mediated immunity is helpful. This study describes successful expression and purification of a chimeric fusion protein which consists of Heparin-Binding Hemagglutinin Adhesin (HBHA) and high antigenic region of Fibronectin Attachment Protein (FAP-P). Triggered antigen-specific IFN-γ response of isolated PBMCs from immunized goats to rHBHA-FAP and all crude proteins of MAP (PPD), was measured by ELISA. RESULTS: Significant increases were observed in the IFN-γ production level of peripheral blood mononuclear cells (PBMCs) stimulated by constructed chimeric protein from rHBHA-FAP and PPD vaccinated goats. Antigen-specific gamma interferon (IFN-γ) secretion in positive group (immunized by PPD) against rHBHA-FAP and test group (immunized by rHBHA-FAP) against PPD, also statistically insignificant rises between stimulation with rHBHA-FAP and PPD, suggested the potential and specificity of our chimeric protein to stimulate cell mediated immunity against MAP. CONCLUSIONS: Collectively, these results demonstrate that rHBHA-FAP elicits a strong IFN-γ production in PBMC culture. Therefore, further studies of the present product as a candidate vaccine in naturally infected animals should be conducted, to analyze its potential.

3.
Mol Biotechnol ; 61(7): 506-512, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31020618

ABSTRACT

This study was aimed to express and deliver a Mycobacterium avium subsp. paratuberculosis antigen to macrophages using salmonella as carrier. The coding sequence of a fibronectin attachment protein which is expressed by Mycobacterium avium subsp. paratuberculosis was cloned into pcDNA3.1 (+) plasmid. The construct was introduced into the attenuated Salmonella typhimurium strain SL7207 (ΔhisG, ΔaroA) as carrier. In order to evaluate the delivery capacity of Salmonella and gene expression by antigen-presenting cells, the THP-1 derived macrophages were infected with the salmonella carrier. SDS-PAGE and western blot analysis showed the successful delivery and expression of targeted gene in THP-1 cell line. Although, in vitro stimulation of peripheral blood mononuclear cells with Salmonella containing plasmid did not trigger IFNγ production significantly. But it seems that this carrier can increase plasmid uptake and antigen expression by host intestinal antigen-presenting cells after mucosal administration. So, the construct can be used for further in vivo studies on the Salmonella carrier's efficiency in mycobacterial DNA vaccines.


Subject(s)
Adhesins, Bacterial/immunology , Antigens, Bacterial/immunology , Genetic Vectors , Macrophages/immunology , Mycobacterium avium subsp. paratuberculosis/immunology , Salmonella typhimurium , Adhesins, Bacterial/genetics , Cloning, Molecular , Humans , Interferon-gamma/metabolism , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium avium subsp. paratuberculosis/genetics , THP-1 Cells , Transformation, Bacterial
4.
Microbiologyopen ; 8(6): e00759, 2019 06.
Article in English | MEDLINE | ID: mdl-30358940

ABSTRACT

It is common knowledge that fecal microbiota is a primary source of Escherichia coli causing urinary tract infections (UTIs) via the fecal-perineal-urethral route. But, it is still unknown whether E. coli UTI is mainly caused by dominant fecal E. coli isolates (prevalence hypothesis) or the isolates that possess more virulence factors (special pathogenicity hypothesis). In the present study, the urine E. coli isolates of 30 women with UTI were compared with the fecal E. coli isolates of the same patients and healthy control individuals according to the phylogenetic group, virulence genotype, and antibiotic susceptibility pattern. The genetic relatedness of the isolates was specified and compared by pulsed-field gel electrophoresis (PFGE). PFGE analysis showed that most patients (73.3%) had distinct urine isolates which were not similar to any of their fecal isolates. Based on the phylogenetic analysis, most of the urine and fecal isolates of healthy women were assigned to phylogenetic group B2, followed by D. The distribution of phylogenetic groups was significantly different between the urine and the fecal isolates of patients (p < 0.05). The prevalence of fimH and ompT among urine isolates was significantly more than that among fecal isolates. The level of multidrug resistance was higher among urine isolates. Although more in-depth researches are required, the present study could be supported by pathogenicity hypothesis. Furthermore, concerning the antibiotic resistance pattern among uropathogenic E. coli should be highly considered.


Subject(s)
Escherichia coli Infections/microbiology , Feces/microbiology , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Adult , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Genotype , Humans , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phylogeny , Urine/microbiology , Uropathogenic Escherichia coli/classification , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/isolation & purification
5.
Mol Biol Res Commun ; 6(4): 161-168, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29417085

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants and there has been a shift in the public health approach to MAP and human diseases like Crohn's disease. The prevention of infection by MAP in ruminants is thought to deter the high impact of economic losses in the level of dairy industry and possible spreading of this pathogen in dairy products. The present study was done to investigate the construction and expression of the soluble form of a novel fusion protein, consisting of Heparin-binding hemagglutinin (HBHA) and high antigenic region of Fibronectin Attachment Protein-P (FAP-P), in order to introduce as a Th1 inducer subunit vaccine against MAP. HBHA is a mycobacterial adhesin and it has been demonstrated that a HBHA-specific IFN-γ response, in latent M. tuberculosis infection, depends on the methylation of the antigen. Further, FAP-P induces Th1 polarization. Because methylation of HBHA was not performed in E. coli, Pichia pastoris was chosen as the host. The desired fusion protein had a similar 3D structure to that of HBHA with its native form and post-translational methylation in C-terminal. Hence, the uptake of the purified fusion protein will be done by M cells because of HBHA, and cell-mediated immunity will be induced because of both antigens. Eventually, successful construction and expression of the newly-designed chimeric protein under the mentioned conditions is reported in this article.

SELECTION OF CITATIONS
SEARCH DETAIL
...