Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biologicals ; 44(5): 291-305, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27461239

ABSTRACT

Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter describes the identification of critical quality attributes (CQAs) as an important first step for QbD development of biopharmaceuticals. A systematic scientific based risk ranking and filtering approach allows a thorough understanding of quality attributes and an assignment of criticality for their impact on drug safety and efficacy. To illustrate the application of the approach and tools, a few examples from monoclonal antibodies are shown. The identification of CQAs is a continuous process and will further drive the structure and function characterization of therapeutic proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Quality Control , Animals , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology
2.
Biologicals ; 44(5): 319-31, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27430904

ABSTRACT

Quality by design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter describes the elements and tools used to establish acceptance criteria and an attribute testing strategy (ATS) for product variants and process related impurities. The acceptable ranges for CQAs are set based on their potential impact on efficacy and safety/immunogenicity. This approach is focused on the management of patient impacts, rather than simply maintaining a consistent analytical profile. The ATS tools were designed to identify quality attributes that required process and/or testing controls, or that could be captured in a monitoring system to enable lifecycle management of the control strategy.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Quality Control , Animals , Antibodies, Monoclonal/therapeutic use , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/therapeutic use
3.
MAbs ; 5(1): 102-13, 2013.
Article in English | MEDLINE | ID: mdl-23255003

ABSTRACT

Size exclusion chromatography (SEC) is the most commonly used method to separate and quantify monoclonal antibody (mAb) size variants. MAb-A is an IgG1 subtype humanized monoclonal antibody recombinantly produced in Chinese hamster ovary (CHO) cells. SEC analysis of MAb-A resolved a peak, named Peak 1, which elutes between monomer and dimer peaks. MAb-A lots produced from different clones and production scales all have 0.2-0.3% of SEC Peak 1. Electron spray ionization--time of flight mass spectrometry (ESI-TOF MS), microfluidics capillary electrophoresis and sodium dodecyl sulfate-PAGE (SDS PAGE) results demonstrated that SEC Peak 1 contains two structural variants: MAb-A with one extra light chain (2H3L) and MAb-A with two extra light chains (2H4L). The C-terminal Cys of the extra light chain in Peak 1 variants is either a free thiol, capped by glutathione, cysteine, or another light chain. Both electrophoresis and LC/MS analyses of non-reduced and reduced samples suggested that the extra light chains are linked to the MAb-A light chain through disulfide bonds. Isolated SEC Peak 1 fraction had a potency of 50% relative to MAb-A reference material. The 50% potency loss may result from the reduced accessibility to the antigen-binding site caused by the extra light chain(s)' steric hindrance.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Light Chains/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , CHO Cells , Chromatography, Gel , Chromatography, High Pressure Liquid/methods , Cricetinae , Dimerization , Electrophoresis, Polyacrylamide Gel , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism , Mass Spectrometry/methods , Peptide Mapping/methods
4.
MAbs ; 2(6): 613-24, 2010.
Article in English | MEDLINE | ID: mdl-20818176

ABSTRACT

Antibody charge variants have gained considerable attention in the biotechnology industry due to their potential influence on stability and biological activity. Subtle differences in the relative proportions of charge variants are often observed during routine biomanufacture or process changes and pose a challenge to demonstrating product comparability. To gain further insights into the impact on biological activity and pharmacokinetics (PK) of monoclonal antibody (mAb) charge heterogeneity, we isolated the major charge forms of a recombinant humanized IgG1 and compared their in vitro properties and in vivo PK. The mAb starting material had a pI range of 8.7-9.1 and was composed of about 20% acidic variants, 12% basic variants, and 68% main peak. Cation exchange displacement chromatography was used to isolate the acidic, basic, and main peak fractions for animal studies. Detailed analyses were performed on the isolated fractions to identify specific chemical modification contributing to the charge differences, and were also characterized for purity and in vitro potency prior to being administered either subcutaneously (SC) or intravenously (IV) in rats. All isolated materials had similar potency and rat FcRn binding relative to the starting material. Following IV or SC administration (10 mg/kg) in rats, no difference in serum PK was observed, indicating that physiochemical modifications and pI differences among charge variants were not sufficient to result in PK changes. Thus, these results provided meaningful information for the comparative evaluation of charge-related heterogeneity of mAbs, and suggested that charge variants of IgGs do not affect the in vitro potency, FcRn binding affinity, or the PK properties in rats.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Immunoglobulin G/chemistry , Animals , Chromatography, Ion Exchange , Kinetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...