Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 8(1-2): 217-25, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12459917

ABSTRACT

Copper-64 ( T(1/2)=12.7 h; beta(+): 0.653 MeV, 17.4%; beta(-): 0.578 MeV, 39%) is produced in a biomedical cyclotron and has applications in both imaging and therapy. Macrocyclic chelators are widely used as bifunctional chelators to bind copper radionuclides to antibodies and peptides owing to their relatively high kinetic stability. In this paper, we evaluated three tetraaza macrocyclic ligands with two, three, and four pendant methanephosphonate functional groups. DO2P [1,4,7,10-tetraazacyclododecane-1,7-di(methanephosphonic acid)], DO3P [1,4,7,10-tetraazacyclododecane-1,4,7-tri(methanephosphonic acid)], and DOTP [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methanephosphonic acid)] were all radiolabeled with (64)Cu in high radiochemical yields. Copper-64-labeled DO2P and DOTP were highly stable in rat serum out to 24 h, while (64)Cu-DO3P remained 73% intact, with the remainder possibly forming a (64)Cu(.)2DO3P dimer by 24 h. The biodistribution experiments were performed in normal Sprague-Dawley rats. Of the three complexes, (64)Cu-DO2P demonstrated the most optimal clearance through the blood and liver. Copper-64-DO3P and (64)Cu-DOTP exhibited higher liver uptake and longer retention of liver activity, possibly because of the large negative charge of the complexes under physiological conditions. All three (64)Cu-labeled complexes showed high accumulation in bone, likely due to the binding of the methanephosphonate groups to hydroxyapatite. These results suggest that this series of methanephosphonate macrocyclic ligands may be useful as potential bone-imaging agents. The thermodynamic stability constants of the Cu(II) complexes with these three ligands were determined, and were found to be significantly higher than those of their acetate analogues. The Cu(II)-DO2P complex exhibited the highest stability constant among divalent transition metal ion DO2P complexes. Metabolism studies of (64)Cu-DO2P in rat liver suggest that the DO2P ligand may be used as a bifunctional chelator for copper radionuclides in radiodiagnostic or radiotherapeutic studies.


Subject(s)
Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacokinetics , Copper Radioisotopes , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , Chelating Agents , Drug Stability , Female , Isotope Labeling , Ligands , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacokinetics , Rats , Rats, Sprague-Dawley , Thermodynamics , Tissue Distribution
2.
J Med Chem ; 45(2): 469-77, 2002 Jan 17.
Article in English | MEDLINE | ID: mdl-11784151

ABSTRACT

Macrocyclic chelators and their metal complexes have widespread applications in the biomedical sciences, including radiopharmaceutical chemistry. The use of copper radionuclides in radiopharmaceuticals is increasing. Macrocyclic chelators have been found to have enhanced in vivo stability over acyclic chelators such as ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA). The currently used chelators of choice for labeling copper radionuclides to biological molecules are analogues of TETA (1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid); however, recent reports have demonstrated evidence of in vivo instability of the radio-Cu(II)-TETA complexes. A new class of structurally reinforced macrocycles, the "cross-bridged" cyclam derivatives, form highly stable complexes with Cu(II) that are resistant to dissociation in strong acid. Here, we evaluate a series of (64)Cu(II) cross-bridged macrocyclic complexes for biological stability and in vivo behavior. The ligands evaluated include the parent ligand, 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (1), and three 4,11-di-pendant arm derivatives: 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (2); 4,11-bis(N,N-diethyl-amidomethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (3); and 4,11-bis(amidoethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (4). Copper-64 formed complexes with ligands 1-4 in high radiochemical yields. The (64)Cu-2 complex was neutral, while (64)Cu complexes of 1, 3, and 4 were positively charged. All complexes showed no decomposition in rat serum out to 24 h. Biodistribution experiments in Sprague-Dawley rats indicated that (64)Cu-1, -3, and -4 were taken up by the liver and kidney and cleared slowly over 24 h, whereas (64)Cu-2 cleared rapidly from all tissues. The rapid clearance of the (64)Cu-2 complex from the blood and liver, as well as liver metabolism experiments in rats, suggests that it is highly stable in vivo. A bifunctional chelator of 2 is a significant candidate for labeling copper radionuclides to biological molecules for diagnostic imaging and targeted radiotherapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Chelating Agents/chemical synthesis , Copper Radioisotopes , Heterocyclic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chelating Agents/chemistry , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Drug Stability , Female , Isotope Labeling , Ligands , Liver/metabolism , Male , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacokinetics , Potentiometry , Protons , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Tissue Distribution
4.
Inorg Chem ; 35(13): 3821-3827, 1996 Jun 19.
Article in English | MEDLINE | ID: mdl-11666570

ABSTRACT

Single p-toluic acid pendant groups were attached to 1,4,7,10,13-pentaazacyclopentadecane (15aneN5) and 1,4,8,11-tetraazacyclotetradecane (cyclam) to prepare bifunctional reagents for radiolabeling monoclonal antibodies with (64,67)Cu. The ligands are 1,4,7,10,13-pentaazacyclopentadecane-1-(alpha-1,4-toluic acid) (PCBA) and 1,4,8,11-tetraazacyclotetradecane-1-(alpha-1,4-toluic acid) (CPTA). For the parent macrocycles and their pendant arm derivatives, the 1:1 Cu(2+) complexes dissociate only below pH 2. At pH 0.0 and 25 degrees C the CPTA-Cu complex has a half-life toward complete dissociation of 24 days. A new approach was developed for the estimation of the Cu(2+) stability constant for the kinetically robust CPTA. All other formation constants were determined at 25.0 degrees C with batch spectrophotometric techniques. Potentiometric titrations were used to determine the protonation constants of the macrocyclic ligands as well as of the metal chelates. The protonation constants, stability constants, and pM's are discussed in terms of both molecular mechanics calculations and the ligands' potential applicability as copper(II) radiopharmaceuticals.

5.
Inorg Chem ; 35(9): 2630-2636, 1996 Apr 24.
Article in English | MEDLINE | ID: mdl-11666480

ABSTRACT

The hexaaza macrocyclic ligand 3,6,9,16,19,22-hexaaza-27,28-dioxatricyclo[22.2.1.1(11,14)]octacosa-1(26),11,13,24-tetraene (BFBD), forms both mono- and dinuclear complexes, as well as several protonated and hydroxo chelates, with Cu(II) ions. These cationic species can bind inorganic and organic anions through coordination and hydrogen bonding. Stability constants of the mono- and dinuclear Cu(II) complexes of BFBD and their interaction with oxalate, malonate, and pyrophosphate anions have been measured potentiometrically. The nature of the bonding between the hosts and the guests is discussed. The crystal structures of two new dinuclear Cu(II) complexes, determined by X-ray crystallography, are also reported. [BFBDCu(2)(Cl)(3)]ClO(4).0.5H(2)O crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.267(2) Å, b = 12.155(6) Å, c = 18.461 0 Å, beta = 90.86(2) degrees, and Z = 4. Each Cu(II) ion is coordinated by three nitrogen atoms from the diethylenetriamine unit of the macrocyclic ligand and two chloride anions, forming a square pyramidal geometry. [BFBDCu(2)(Ox)](BF(4))(1.8)Cl(0.2) crystallizes in the triclinic system, space group P1, with a = 6.772(1) Å, b = 10.646(2) Å, c = 11.517(2) Å, alpha = 64.74(3) degrees, beta = 79.79(3) degrees, gamma = 81.94(3) degrees, and Z = 1. The environment of each copper is intermediate between square pyramidal and trigonal pyramidal. The oxalate anion bridges in a bis-bidentate fashion between two Cu(II) ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...