Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 644: 1254-1267, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30743838

ABSTRACT

Microbial mats are commonly observed in estuaries and in salt marshes but they only rarely represent a significant surface involved in salt production. In the Secovlje salt works in Northern Adriatic, a microbial mat known as the "petola" covers the bottom of salt crystallising pans, highly influencing salt composition and salt production processes. Throughout the year the petola is subjected to numerous co-varying factors that drive changes in its structure and the microbial community. Seasonal modifications were investigated via various methods (cryo-HRSEM, XRD, elemental analysis, carbohydrate content, bacterial community structure). This study provides knowledge on microbial mat compositional characteristics and functional roles in response to seasonal variation in environmental conditions. The in situ characterisation (close-to its natural hydrated state) of the three-dimensional microstructure provides precise information about dominating filamentous cyanobacterium Coleofasciculus chthonoplastes and extracellular polymer secretion (EPS) organisation. This is the first study to address how microbial mat composition and structure, especially 3D EPS network (and microbial diversity), affects the salt production processes within a hypersaline environment.


Subject(s)
Biofilms/growth & development , Cyanobacteria/growth & development , Seawater/microbiology , Biodiversity , Salt Tolerance , Slovenia
2.
Sci Total Environ ; 579: 620-627, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27887831

ABSTRACT

A 2-year pot experiment was carried out to examine the aging effect of biochar (B), alone or combined with iron grit (Z), on Cu stabilization and plant growth in a contaminated soil (964mg Cu kg-1) from a wood preservation site. The experiment consisted in 3 soil treatments, either planted with Arundo donax L. (Ad) or Populus nigra L. (Pn): (1) untreated Cu-contaminated soil (Ad, Pn); (2) Unt+1% (w/w) B (AdB, PnB), and (3) Unt+1% B+1% Z (AdBZ, PnBZ). After 22months, the soil pore water (SPW) was sampled and roots and shoots were harvested. The SPW compositions at 3 and 22months were compared, showing that the SPW Cu2+ concentration increased again in the PnB and PnBZ soils. Cultivation of A. donax enhanced the dissolved organic matter concentration in the SPW, which decreased its Cu2+ concentration but promoted its total Cu concentration in the Ad and AdB soils. Adding Z with B reduced both SPW Cu2+ and Cu concentrations in the pots cultivated by A. donax and P. nigra as compared to B alone. The B and BZ treatments did not enhance root and shoot yields of both plant species as compared to the Unt soil but their shoot Cu concentrations were in the range of common values.


Subject(s)
Copper/chemistry , Environmental Restoration and Remediation/methods , Soil Pollutants/chemistry , Biomass , Charcoal , Copper/analysis , Iron , Populus , Soil , Soil Pollutants/analysis , Wood/chemistry
3.
Sci Total Environ ; 566-567: 816-825, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27259036

ABSTRACT

Two biochars, a green waste compost and iron grit were used, alone and in combination, as amendment to improve soil properties and in situ stabilize Cu in a contaminated soil (964mgCukg(-1)) from a wood preservation site. The pot experiment consisted in 9 soil treatments (% w/w): untreated Cu-contaminated soil (Unt); Unt soil amended respectively with compost (5%, C), iron grit (1%, Z), pine bark-derived biochar (1%, PB), poultry-manure-derived biochar (1%, AB), PB or AB+C (5%, PBC and ABC), and PB or AB+Z (1%, PBZ and ABZ). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. In the SPW, all amendments decreased the Cu(2+) concentration, but total Cu concentration increased in all AB-amended soils due to high dissolved organic matter (DOM) concentration. No treatment improved root and shoot DW yields, which even decreased in the ABC and ABZ treatments. The PBZ treatment decreased total Cu concentration in the SPW while reducing the gap with common values for root and shoot yields of dwarf bean plants. A field trial is underway before any recommendation for the PB-based treatments.


Subject(s)
Charcoal/analysis , Composting , Copper/toxicity , Iron/chemistry , Phaseolus/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Biodegradation, Environmental , France , Phaseolus/chemistry , Phaseolus/growth & development , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL