Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 22(18): 13842-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26081775

ABSTRACT

The spatio-temporal trend of trace metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a tropical urban estuary under the influence of monsoon was determined using diffusive gradient in thin films (DGT) in situ samplers. Three different climatic periods were observed: period 1, dry with dredging activity; period 2, intermediate meaning from dry to wet event; and period 3, wet having continuous rainfall. Conforming to monsoon regimes, these periods correspond to the following: transition from winter to summer, winter, and summer monsoons, respectively. The distinction of each period is defined by their specific hydrological and physico-chemical conditions. Substantial concentrations of the trace metals were detected. The distribution and trend of the trace metals under the challenge of a tropical climate were able to follow using DGT as a sensitive in situ sampler. In order to identify the differences among periods, statistical analyses were performed. This allowed discriminating period 2 (oxic water) as significantly different compared to other periods. The spatio-temporal analysis was then applied in order to distinguish the trend of the trace metals. Results showed that the trend of trace metals can be described according to their response to (i) seasonal variations (Cd and Cr), (ii) spatio-temporal conditions (Co, Cu, Ni, and Pb), and (iii) neither (i) nor (ii) meaning exhibiting no response or having constant change (Zn). The correlation of the trace metals and the physico-chemical parameters reveals that Cd, Co, Cu, and Cr are proportional to the dissolved oxygen (DO), Cd and Ni are correlated pH, and Zn lightly influenced by salinity.


Subject(s)
Cities , Environmental Monitoring/statistics & numerical data , Trace Elements/analysis , Tropical Climate , Water Pollutants, Chemical/analysis , Water/chemistry , Weather , Estuaries , Oxygen/chemistry , Seasons , Spatio-Temporal Analysis
2.
Environ Sci Pollut Res Int ; 22(9): 6390-406, 2015 May.
Article in English | MEDLINE | ID: mdl-25253053

ABSTRACT

The aim of this review was to summarize information and scientific data from the literature dedicated to the fate of polyacrylamide (PAM)-based flocculants in hydrosystems. Flocculants, usually composed of PAMs, are widely used in several industrial fields, particularly in minerals extraction, to enhance solid/liquid separation in water containing suspended matter. These polymers can contain residual monomer of acrylamide (AMD), which is known to be a toxic compound. This review focuses on the mechanisms of transfer and degradation, which can affect both PAM and residual AMD, with a special attention given to the potential release of AMD during PAM degradation. Due to the ability of PAM to adsorb onto mineral particles, its transport in surface water, groundwater, and soils is rather limited and restricted to specific conditions. PAM can also be a subject of biodegradation, photodegradation, and mechanical degradation, but most of the studies report slow degradation rates without AMD release. On the contrary, the adsorption of AMD onto particles is very low, which could favor its transfer in surface waters and groundwater. However, AMD transfer is likely to be limited by quick microbial degradation.


Subject(s)
Acrylamide/chemistry , Acrylic Resins/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Biodegradation, Environmental , Flocculation , Photolysis
3.
Environ Sci Pollut Res Int ; 21(17): 10470-80, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24854499

ABSTRACT

The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability.


Subject(s)
Benzopyrans/analysis , Humic Substances/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , France , Sewage/chemistry , Waste Disposal Facilities , Wood/chemistry
4.
Environ Sci Technol ; 40(7): 2156-62, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16646447

ABSTRACT

Flow field flow fractionation (FIFFF), inductively coupled plasma-mass spectroscopy (ICP-MS), and transmission electron microscopy (TEM) coupled to X-ray energy dispersive spectrometry (X-EDS) are used in series for the first time to characterize colloids. Results demonstrate the utility of FIFFF-ICP-MS-TEM/X-EDS to relate physical properties (size) of colloids to their chemical properties (chemical composition, surface chemical composition, and colloids-trace elements association). Results suggest that the major part of natural organic matter (NOM) is concentrated in the fraction < 0.01 microm (C2). Aluminum, iron, and manganese are the main colloidal components in the fraction 0.01-0.45 microm (C1). Aluminum occurs as aluminum oxides or aluminosilicates in the whole size range, while iron and manganese occur as individual oxyhydroxides in the size range < 0.20 microm. Within the C2 fraction, Al, Mn, Cu, and Ni elements are complexed to NOM (e.g., humic substances). Iron is complexed to NOM in some samples and probably free in other samples. Lead is totally free in all samples. Within the C1 fraction, Cu and Pb are mostly associated to Fe and Mn oxyhydroxides. Consequently, NOM with Fe and Mn oxyhydroxides are the main colloidal carriers of trace elements in the Loire watershed system.


Subject(s)
Colloids/chemistry , Fractionation, Field Flow/methods , Mass Spectrometry/methods , Microscopy, Electron, Transmission/methods , Spectrum Analysis/methods , Trace Elements/chemistry , Particle Size , X-Rays
5.
Sci Total Environ ; 357(1-3): 208-20, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-15936802

ABSTRACT

The insolubility of metal sulphides is believed to limit the bioavailability of trace metals in sulphidic sediments. However, if non-equilibrium conditions are important, metals may be more available than simple thermodynamic calculations suggest. To investigate the possible dynamic supply of Cu, Ni and Zn in a sulphidic freshwater sediment, they were measured, along with iron, manganese and sulphide, by the technique of diffusive gradients in thin-films (DGT). DGT measures the supply of solute from sediment to solution in response to a local solute sink. Release of Mn, Cu, Zn and Ni was observed at the sediment surface and attributed to the supply from reductive dissolution of manganese oxides. The depth profile of simultaneously extractable metals (SEM) for Cu and Ni followed the shape of the Mn profile more closely than the profiles of either acid volatile sulphur (AVS) or Fe, again consistent with supply from Mn oxides. Solubility calculations for a mesocosm of homogenised sediment indicated supersaturation with respect to the sulphides of Fe, Cu, Ni and Zn, yet DGT measurements demonstrated a substantial supply of both trace metals and sulphide from the solid phase to the pore waters. Ratios of metals measured in pore waters by DGT were consistent with their release from iron and manganese oxides, indicating that supply, as much as removal processes, determines the pseudo-steady state concentrations in the pore waters. The observations suggest that trace metals are not immediately bound in an insoluble, inert form when they are in contact with sulphide. This has consequences for modelling metal processes in sediment, as well as for uptake by some biota.


Subject(s)
Chemistry Techniques, Analytical/methods , Geologic Sediments/analysis , Metals, Heavy/analysis , Sulfides/analysis , Water Pollutants, Chemical/analysis , Acrylic Resins/chemistry , Diffusion , Environmental Monitoring/methods , Fresh Water , Geologic Sediments/chemistry , Iodides/chemistry , Kinetics , Metals, Heavy/chemistry , Resins, Synthetic/chemistry , Silver Compounds/chemistry , Sulfides/chemistry
6.
J Chromatogr A ; 1104(1-2): 272-81, 2006 Feb 03.
Article in English | MEDLINE | ID: mdl-16360663

ABSTRACT

Flow-field flow fractionation (FlFFF) coupled to multi-angle laser light scattering (MALLS) was evaluated for size and shape determination of standard spherical and arbitrarily shaped natural colloids. Different fitting methods for light scattering data retrieved from MALLS were evaluated to determine the particle size of spherical standards and natural colloids. In addition, FlFFF was optimized for best fractionation in connection to MALLS, minimal colloids-membrane interaction, and minimal sample losses. FlFFF, calibrated with standard particles, was used to determine hydrodynamic diameter, or radius (D(h) or R(h)), of the fractionated colloids, whereas the MALLS was used to determine root mean square radius of gyration (R(g)) for fractionated colloids. Combining both results, by calculating the R(g)/R(h) ratio, allows an estimation of colloid deviation from the shape of homogeneous sphere. Accordingly, this study demonstrates that, FlFFF-MALLS is a valuable technique for characterizing heterogeneous and arbitrarily shaped natural colloidal particles in terms of size and shape. To check the usefulness of FlFFF-MALLS in natural colloid studies, the technique was used to investigate the sedimentation behavior of extracted soil colloidal particles. Results illustrate that, in a silty till sample, carbonates function as cement between the colloidal particles, and consequently, change their sedimentation behavior. On the other hand, carbonate dissolution generates a more homogeneous colloidal sample.


Subject(s)
Colloids/chemistry , Fractionation, Field Flow , Scattering, Radiation , Lasers , Light , Particle Size
7.
J Chromatogr A ; 1093(1-2): 156-66, 2005 Nov 04.
Article in English | MEDLINE | ID: mdl-16233881

ABSTRACT

Two flow field flow fractionation (FlFFF) systems: symmetrical (SFlFFF) and asymmetrical (ASFlFFF) were evaluated to fractionate river colloids. Samples stability during storage and colloids concentration are the main challenges limiting their fractionation and characterization by FlFFF. A pre-fractionation (<0.45 microm) and addition of a bactericide such as NaN3 into river colloidal samples allowed obtaining stable samples without inducing any modification to their size. Stirred cell ultra-filtration allowed colloidal concentration enrichment of 25-folds. Scanning electron microscope (SEM) micrographs confirmed the gentle pre-concentration of river samples using the ultra-filtration stirred cell. Additionally, larger sample injection volume in the case of SFlFFF and on channel concentration in the case of ASFlFFF were applied to minimize the required pre-concentration. Multi angle laser light scattering (MALLS), and transmission electron microscope (TEM) techniques are used to evaluate FlFFF fractionation behavior and the possible artifacts during fractionation process. This study demonstrates that, FlFFF-MALLS-TEM coupling is a valuable method to fractionate and characterize colloids. Results prove an ideal fractionation behavior in case of Brugeilles sample and steric effect influencing the elution mode in case of Cézerat and Chatillon. Furthermore, comparison of SFlFFF and ASFlFFF fractograms for the same sample shows small differences in particle size distributions.


Subject(s)
Fractionation, Field Flow/methods , Microscopy, Electron, Transmission/methods , Colloids , Spectrophotometry, Ultraviolet/methods , Water
8.
Sci Total Environ ; 328(1-3): 275-86, 2004 Jul 26.
Article in English | MEDLINE | ID: mdl-15207590

ABSTRACT

The technique of DGT (Diffusive Gradients in Thin Films) was further developed to allow simultaneous measurement of sulfide and trace metals at the same location in sediment. The new combined DGT probe consisted of a layer of gel impregnated with AgI, overlain by (1) a layer of gel containing Chelex, (2) a layer of gel and (3) a filter membrane. Diffusion of sulfide was controlled by layers (1) to (3), while diffusion of metals was controlled by layers (2) and (3). The Chelex gel trapped metals that were measured after elution with acid. The AgI gel trapped sulfide through the formation of Ag2S. This was then measured densitometrically as the colour changed from pale yellow to grey. Experiments demonstrated that concentrations of metal or sulfide measured by the combined device were no different to the concentrations measured by more conventional devices. The presence of Chelex in the gel did not impede the diffusion of sulfide. Deployment of a combined probe in marine sediment revealed simultaneous remobilisation of metals and sulfide at the same location. Solubility calculations indicated that some precipitation of amorphous FeS was probably occurring at the maxima in sulfide concentrations. There was general undersaturation with respect to NiS, but ZnS was supersaturated at all locations. There appeared to be localised active zones of organic matter decomposition, where reduction of manganese oxides, iron oxides and sulfate occurred simultaneously. Mass balance calculations indicated that Ni could not be supplied by release from decomposing organic matter. Manganese oxides were the most likely source, but supply from reductive dissolution of iron oxides could not be entirely discounted. Supply from either Fe or Mn oxides could account for the Zn maxima. Application of the newly developed combined probe provides new information that helps understanding of the complex nature of trace metal and sulfur chemistry in sediments.


Subject(s)
Chemistry Techniques, Analytical/methods , Environmental Monitoring/methods , Geologic Sediments , Metals, Heavy/analysis , Sulfides/analysis , Chemistry Techniques, Analytical/instrumentation , Densitometry , Environmental Monitoring/instrumentation , Polystyrenes , Polyvinyls , Silver Compounds/chemistry
9.
Talanta ; 46(3): 407-22, 1998 Jul.
Article in English | MEDLINE | ID: mdl-18967162

ABSTRACT

Management of domestic wastes often relies on incineration, a process that eliminates large amount of wastes but also produces toxic residues that concentrate heavy metals. Those hazardous secondary wastes require specific treatment. Vitrification is seen as a powerful way to stabilise them. However, concern exists about the long term behaviour of these glass wastes and the potential release of toxic species into the environment. The answers will come with further investigation into the physico-chemical evolution of the vitrified wastes and the mobility of hazardous elements within the matrix with appropriate analytical methods. Laser ablation coupled with inductively coupled mass spectrometry (LA-ICP-MS) is a challenging technique for the chemical analysis of trace elements in solid materials. This paper presents an evaluation of the potential of LA- ICP-MS for macro and microanalysis of trace metals in domestic vitrified wastes with regards to other physical analytical techniques of solids such as scanning electronprobe X-ray energy dispersive spectroscopy (SEM-EDXS). Two typical samples, vitreous and crystallised, are used to compare the analytical performances of the two techniques. SEM-EDXS was used for mineralogical characterisation and chemical analysis of the mineralogical phases. Relative micro-analysis and bulk quantitative analysis of 30 major, minor and trace elements was performed by LA-ICP-MS: precision was between 10 and 20% for most elements and quantitative analysis proved possible with an accuracy of 20% and relative detection limits of 0.1 mg kg(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...