Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 693: 133484, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31374507

ABSTRACT

Eutrophication of freshwaters occurs in watersheds with excessive pollution of phosphorus (P). Factors that affect P cycling and transport, including climate and land use, are changing rapidly and can have legacy effects, making future freshwater quality uncertain. Focusing on the Yahara Watershed (YW) of southern Wisconsin, USA, an intensive agricultural landscape, we explored the relative influence of land use and climate on three indicators of water quality over a span of 57 years (2014-2070). The indicators included watershed-averaged P yield from the land surface, direct drainage P loads to a lake, and average summertime lake P concentration. Using biophysical model simulations of future watershed scenarios, we found that climate exerted a stronger influence than land use on all three indicators, yet land use had an important role in influencing long term outcomes for each. Variations in P yield due to land use exceeded those due to climate in 36 of 57 years, whereas variations in load and lake total P concentration due to climate exceeded those due to land use in 54 of 57 years, and 52 of 57 years, respectively. The effect of land use was thus strongest for P yield off the landscape and attenuated in the stream and lake aquatic systems where the influence of weather variability was greater. Overall these findings underscore the dominant role of climate in driving inter-annual nutrient fluxes within the hydrologic network and suggest a challenge for land use to influence water quality within streams and lakes over timescales less than a decade. Over longer timescales, reducing applications of P throughout the watershed was an effective management strategy under all four climates investigated, even during decades with wetter conditions and more frequent extreme precipitation events.

2.
Ecol Appl ; 28(1): 119-134, 2018 01.
Article in English | MEDLINE | ID: mdl-28944518

ABSTRACT

Sustaining food production, water quality, soil retention, flood, and climate regulation in agricultural landscapes is a pressing global challenge given accelerating environmental changes. Scenarios are stories about plausible futures, and scenarios can be integrated with biophysical simulation models to explore quantitatively how the future might unfold. However, few studies have incorporated a wide range of drivers (e.g., climate, land-use, management, population, human diet) in spatially explicit, process-based models to investigate spatial-temporal dynamics and relationships of a portfolio of ecosystem services. Here, we simulated nine ecosystem services (three provisioning and six regulating services) at 220 × 220 m from 2010 to 2070 under four contrasting scenarios in the 1,345-km2 Yahara Watershed (Wisconsin, USA) using Agro-IBIS, a dynamic model of terrestrial ecosystem processes, biogeochemistry, water, and energy balance. We asked (1) How does ecosystem service supply vary among alternative future scenarios? (2) Where on the landscape is the provision of ecosystem services most susceptible to future social-ecological changes? (3) Among alternative future scenarios, are relationships (i.e., trade-offs, synergies) among food production, water, and biogeochemical services consistent over time? Our results showed that food production varied substantially with future land-use choices and management, and its trade-offs with water quality and soil retention persisted under most scenarios. However, pathways to mitigate or even reverse such trade-offs through technological advances and sustainable agricultural practices were apparent. Consistent relationships among regulating services were identified across scenarios (e.g., trade-offs of freshwater supply vs. flood and climate regulation, and synergies among water quality, soil retention, and climate regulation), suggesting opportunities and challenges to sustaining these services. In particular, proactive land-use changes and management may buffer water quality against undesirable future climate changes, but changing climate may overwhelm management efforts to sustain freshwater supply and flood regulation. Spatially, changes in ecosystem services were heterogeneous across the landscape, underscoring the power of local actions and fine-scale management. Our research highlights the value of embracing spatial and temporal perspectives in managing ecosystem services and their complex interactions, and provides a system-level understanding for achieving sustainability of the food-water-climate nexus in agricultural landscapes.


Subject(s)
Agriculture , Ecosystem , Sustainable Development , Wisconsin
3.
PLoS One ; 8(7): e68847, 2013.
Article in English | MEDLINE | ID: mdl-23844244

ABSTRACT

Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below -3.5 °C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978-2007) reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at -3.5 °C and -6.0 °C for different Miscanthus genotypes) were reached at rhizome planting depth (10 cm) over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between -8 °C to -11 °C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below -3.5 °C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below -6.0 °C in 50-60% of all years. For simulated management options that established varied thicknesses (1-5 cm) of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5 °C to 6 °C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching -3.5 °C was greatly reduced with 2-5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than -3.5 °C in 50-80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few years after establishment, although low productivity and biomass availability during these early stages could hamper such efforts.


Subject(s)
Cold Temperature , Seasons , Agriculture , Computer Simulation , Ecosystem , Geographic Information Systems , Midwestern United States , Models, Theoretical , Poaceae/growth & development , Reproducibility of Results , Snow , Soil
4.
Environ Manage ; 52(1): 277-88, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23784713

ABSTRACT

Conservation organizations rely on conservation easements for diverse purposes, including protection of species and natural communities, working forests, and open space. This research investigated how perpetual conservation easements incorporated property rights, responsibilities, and options for change over time in land management. We compared 34 conservation easements held by one federal, three state, and four nonprofit organizations in Wisconsin. They incorporated six mechanisms for ongoing land management decision-making: management plans (74 %), modifications to permitted landowner uses with discretionary consent (65 %), amendment clauses (53 %), easement holder rights to conduct land management (50 %), reference to laws or policies as compliance terms (47 %), and conditional use permits (12 %). Easements with purposes to protect species and natural communities had more ecological monitoring rights, organizational control over land management, and mechanisms for change than easements with general open space purposes. Forestry purposes were associated with mechanisms for change but not necessarily with ecological monitoring rights or organizational control over land management. The Natural Resources Conservation Service-Wetland Reserve Program had a particularly consistent approach with high control over land use and some discretion to modify uses through permits. Conservation staff perceived a need to respond to changing social and ecological conditions but were divided on whether climate change was likely to negatively impact their conservation easements. Many conservation easements involved significant constraints on easement holders' options for altering land management to achieve conservation purposes over time. This study suggests the need for greater attention to easement drafting, monitoring, and ongoing decision processes to ensure the public benefits of land conservation in changing landscapes.


Subject(s)
Conservation of Natural Resources , Ownership , Climate Change , Government Agencies , Organizations, Nonprofit , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL