Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 175(2): 221-8, 1988 Aug.
Article in English | MEDLINE | ID: mdl-24221716

ABSTRACT

Polypeptides from stems, leaves, sepals, corollas, stamens and pistils of the Japanese morning glory (Ipomoea nil Roth (Pharbitis nil Chois.)) were separated by one- and two-dimensional gel electrophoresis and visualized by silver staining. The majority of polypeptides were expressed in two or more organs, while those specific to only one organ were comparatively rate. Among the polypeptides of the former class were two which appeared to be floral-specific. A 46-kDa (kilodalton) polypeptide was expressed in corollas, stamens and pistils, whereas a 32-kDa polypeptide was observed only in extracts prepared from reproductive organs. Polypeptide spots from the various organs were compared with those from leaves, and it was found that sepals and stems shared 40-50% of their polypeptides with leaves, whereas corollas, stamens and pistils shared 20% or less. The latter organs shared 120 polypeptides or roughly 15% of those identified in the floral extracts. Floralorgan-specific polypeptides comprised nearly 10% of the total floral polypeptides identified.

2.
Appl Environ Microbiol ; 49(3): 656-9, 1985 Mar.
Article in English | MEDLINE | ID: mdl-16346758

ABSTRACT

Hemicellulose fractions with a predetermined distribution of xylose, xylooligomers, and xylan fractions were obtained through steam explosion of wood by the steam explosion-extraction process of BFA-Hamburg, Hamburg, Federal Republic of Germany. A differential utilization of various molecular-weight fractions by several thermophilic anaerobic bacteria was determined during their growth on the hemicellulose preparations. Clostridium thermocellum (60 degrees C) first utilized the high-molecular-weight fractions (polymerization degree of 15 to 40 xylose units). Xylose and xylooligomers of n = 2 to 5 accumulated while C. thermocellum was not growing, as evident from the fermentation products formed. Whereas the xylan was hydrolyzed and the small oligoxylans were utilized after more than 100 h of incubation, xylose was not significantly utilized. In contrast to this, C. thermohydrosulfuricum (70 degrees C) and Thermoanaerobium brockii (70 degrees C) utilized xylose first and then xylooligomers of n = 2 to 5, but xylooligomers of n greater than 6 were only slowly utilized. Thermoanaerobacter ethanolicus (70 degrees C), Thermobacteroides acetoethylicus (70 degrees C), and C. thermosaccharolyticum (60 degrees C) utilized xylose preferentially. Xylooligomers of n = 2 to 5 and n = 6 and greater were apparently concomitantly utilized without significant differences. In contrast to C. thermocellum, the non-cellulolytic organisms grew during xylan hydrolysis, producing ethanol, lactate, acetate, CO(2), and H(2).

3.
Biochemistry ; 18(24): 5482-9, 1979 Nov 27.
Article in English | MEDLINE | ID: mdl-391268

ABSTRACT

The kinetics of MS2 ribonucleic acid (RNA) directed protein synthesis have been investigated at seven temperatures between 30 and 47 degrees C by using ribosomes isolated from a wild type strain and seven temperature-sensitive mutants of Escherichia coli. The amount of MS2 coat protein formed at each temperature was determined by gel electrophoresis of the products formed with control ribosomes. With ribosomes from each of the mutant strains, the activation energy required to drive protein synthesis below the maximum temperature (up to 40 degrees C) was increased relative to the control (wild type) activity. Preincubation of the ribosomes at 44 degrees C revealed the kinetics of thermal inactivation, with ribosomes from each of the mutants having a half-life for inactivation less than that of the control ribosomes. A good correlation was observed between the relative activity of the different ribosomes at 44 degrees C and their relative rate of thermal inactivation. Mixing assays allowed the identification of a temperature-sensitive ribosomal subunit for each of the mutants. Defects in one or more of three specific steps in protein synthesis (messenger RNA binding, transfer RNA binding, transfer RNA binding, and subunit reassociation) were identified for the ribosomes from each mutant. The relationship between temperature sensitivity and protein synthesis in these strains is discussed.


Subject(s)
Bacterial Proteins/biosynthesis , Escherichia coli/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Kinetics , Mutation , Species Specificity , Temperature , Thermodynamics , Valine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...