Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 672: 604-617, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30970288

ABSTRACT

Mercury and its species are toxic and therefore strategies to immobilize them or to impede the formation of bioaccumulative MeHg are a hot topic of ongoing research. Biochar (BC) and sugar beet factory lime (SBFL) are suggested to have the potential to meet these goals. However, their ability to restrain the mobilization of total Hg (Hgt), methylmercury (MeHg), and ethylmercury (EtHg) or the formation of MeHg and EtHg has not been examined to date. Moreover, the effect of systematically altered redox conditions on the release dynamics of Hgt, MeHg, and EtHg in a contaminated floodplain soil as affected by these soil amendments has not been studied. Therefore, we investigated the impact of pre-defined redox conditions on the release dynamics of Hgt, MeHg, and EtHg in a contaminated floodplain soil (CS) and the soil amended with either BC (CS+BC) or SBFL (CS+SBFL). The mobilization of Hgt, MeHg, and EtHg was generally higher at low redox potential (EH) and decreased with increasing EH, irrespective of soil treatment. Both BC and SBFL diminished the release of Hgt from soil but not the methylation and ethylation of Hg. In CS+SBFL approximately half of Hgt was found in solution compared to CS. However, higher methylation efficiency (MeHg/Hgt ratio) was found in CS+SBFL counterbalancing this benefit. Abundances of specific phospholipid fatty acids suggest the presence of sulfate-reducing bacteria, which are considered as primary Hg methylators. The results indicate that both BC and SBFL have the potential to curtail the release of Hgt from inundated soils, while SBFL was more efficient. However, these amendments had no marked effect on the MeHg and EtHg concentrations. Therefore, further research should be conducted to identify soil additives that are capable to reduce the release and formation of these Hg species.


Subject(s)
Environmental Restoration and Remediation/methods , Mercury/chemistry , Soil Pollutants/chemistry , Beta vulgaris/chemistry , Calcium Compounds/chemistry , Charcoal/chemistry , Environmental Pollution , Mercury/analysis , Methylation , Methylmercury Compounds , Oryza , Oxidation-Reduction , Oxides/chemistry , Soil , Soil Pollutants/analysis , Sugars , Vegetables
2.
Environ Int ; 127: 276-290, 2019 06.
Article in English | MEDLINE | ID: mdl-30951944

ABSTRACT

Mercury (Hg) is a highly toxic element, which is frequently enriched in flooded soils due to its anthropogenic release. The mobilization of Hg and its species is of ultimate importance since it controls the transfer into the groundwater and plants and finally ends in the food chain, which has large implications on human health. Therefore, the remediation of those contaminated sites is an urgent need to protect humans and the environment. Often, the stabilization of Hg using amendments is a reliable option and biochar is considered a candidate to fulfill this purpose. We tested two different pine cone biochars pyrolyzed at 200 °C or 500 °C, respectively, with a view to decrease the mobilization of total Hg (Hgt), methylmercury (MeHg), and ethylmercury (EtHg) and/or the formation of MeHg and EtHg in a contaminated floodplain soil (Hgt: 41 mg/kg). We used a highly sophisticated automated biogeochemical microcosm setup to systematically alter the redox conditions from ~-150 to 300 mV. We continuously monitored the redox potential (EH) along with pH and determined dissolved organic carbon (DOC), SUVA254, chloride (Cl-), sulfate (SO42-), iron (Fe), and manganese (Mn) to be able to explain the mobilization of Hg and its species. However, the impact of biochar addition on Hg mobilization was limited. We did not observe a significant decrease of Hgt, MeHg, and EtHg concentrations after treating the soil with the different biochars, presumably because potential binding sites for Hg were occupied by other ions and/or blocked by biofilm. Solubilization of Hg bound to DOC upon flooding of the soils might have occurred which could be an indirect impact of EH on Hg mobilization. Nevertheless, Hgt, MeHg, and EtHg in the slurry fluctuated between 0.9 and 52.0 µg/l, 11.1 to 406.0 ng/l, and 2.3 to 20.8 ng/l, respectively, under dynamic redox conditions. Total Hg concentrations were inversely related to the EH; however, ethylation of Hg was favored at an EH around 0 mV while methylation was enhanced between -50 and 100 mV. Phospholipid fatty acid profiles suggest that sulfate-reducing bacteria may have been the principal methylators in our experiment. In future, various biochars should be tested to evaluate their potential in decreasing the mobilization of Hg and to impede the formation of MeHg and EtHg under dynamic redox conditions in frequently flooded soils.


Subject(s)
Charcoal/chemistry , Mercury/analysis , Methylmercury Compounds/analysis , Soil Pollutants/analysis , Soil/chemistry , Environmental Pollution , Floods , Methylation , Oxidation-Reduction
3.
Sci Total Environ ; 658: 1500-1513, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30678008

ABSTRACT

This study reports a systematic assessment of treatment efficacy for 15 pilot-scale subsurface flow constructed wetlands of different designs for CBOD5, TSS, TOC, TN, NH4-N, NO3-N, NO2-N, and E. coli over the course of one year in an outdoor study to evaluate the effects of design and plants. The systems consisted of a range of designs: horizontal flow (HF) with 50 and 25 cm depth, unsaturated vertical flow (VF) with sand or fine gravel, and intensified systems (horizontal and saturated vertical flow with aeration, and reciprocating fill and drain). Each system was built in duplicate: one was planted with Phragmites and one was left unplanted (with the exception of the reciprocating system, of which there was only one and it was unplanted). All systems were fed with the same primary-treated domestic wastewater. Effluent concentrations, areal and volumetric mass removal rates, and percent mass removal for the 15 systems are discussed. HF wetlands removed CBOD5, TSS, TN, NH4-N and E. coli by 73-83%, 93-95%, 17-41%, 0-27% and 1.5 log units, respectively. Unsaturated VF and aerated VF wetlands removed CBOD5, TSS, TN, NH4-N and E. coli by 69-99%, 76-99%, 17-40%, 69-99% and 0.9-2.4 log units, respectively. The aerated HF and reciprocating systems removed CBOD5, TSS, TN, NH4-N and E. coli by 99%, 99%, 43-70%, 94-99% and 3.0-3.8 log units, respectively. The aerated HF and reciprocating systems achieved the highest TN removal rate of all of the designs. Design complexity clearly enhanced treatment efficacy (HF < VF < Intensified, p < 0.001) during the first two years of plant growth while the presence of plants had minor effects on TN and NH4-N removal in the shallow HF design only.


Subject(s)
Escherichia coli/isolation & purification , Waste Disposal, Fluid/methods , Wastewater/analysis , Wastewater/microbiology , Water Pollutants, Chemical/analysis , Wetlands , Biological Oxygen Demand Analysis , Pilot Projects
4.
Sci Total Environ ; 621: 960-969, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29128122

ABSTRACT

Treatment wetlands have long been used for domestic and industrial wastewater treatment. In recent decades, treatment wetland technology has evolved and now includes intensified designs such as aerated treatment wetlands. Aerated treatment wetlands are particularly dependent on aeration, which requires reliable air pumps and, in most cases, electricity. Whether aerated treatment wetlands are resilient to disturbances such as an aeration interruption is currently not well known. In order to investigate this knowledge gap, we carried out a pilot-scale experiment on one aerated horizontal flow wetland and one aerated vertical flow wetland under warm (Twater>17°C) and cold (Twater<10°C) weather conditions. Both wetlands were monitored before, during and after an aeration interruption of 6d by taking grab samples of the influent and effluent, as well as pore water. The resilience of organic carbon and nitrogen removal processes in the aerated treatment wetlands depended on system design (horizontal or vertical flow) and water temperature. Organic carbon and nitrogen removal for both systems severely deteriorated after 4-5d of aeration interruption, resulting in effluent water quality similar to that expected from a conventional horizontal sub-surface flow treatment wetland. Both experimental aerated treatment wetlands recovered their initial treatment performance within 3-4d at Twater>17°C (warm weather) and within 6-8d (horizontal flow system) and 4-5d (vertical flow system) at Twater<10°C (cold weather). In the vertical flow system, DOC, DN and NH4-N removal were less affected by low water temperatures, however, the decrease of DN removal in the vertical flow aerated wetland at Twater>17°C was twice as high as in the horizontal flow aerated wetland. The quick recovery of treatment performance highlights the benefits of aerated treatment wetlands as resilient wastewater treatment technologies.

5.
Environ Pollut ; 208(Pt B): 458-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26552521

ABSTRACT

Arsenic and mercury are frequent contaminants in the environment and care must be taken to limit their entrance into the food chain. The toxicity of both elements strongly depends upon their speciation. Total amounts of As and Hg as well as their species were analyzed in muscle and liver of 26 fishes of seven freshwater fish species caught in the River Elbe. The median concentrations of As were 162 µg kg(-1) w.w. in liver and 92 µg kg(-1) w.w. in muscle. The median concentrations of total Hg were 241 µg kg(-1) w.w. in liver and 256 µg kg(-1) w.w. in muscle. While this level of Hg contamination of the freshwater fish in the River Elbe is significantly lower than 20 years ago, it exceeds the recommended environmental quality standard of 20 µg Hg kg(-1) w.w. by a factor of 5-50. However, the European maximum level of 500 µg Hg kg(-1) for fish for human consumption is rarely exceeded. Arsenic-containing fatty acids and hydrocarbons were determined and partially identified in methanolic extracts of the fish by HPLC coupled in parallel to ICP-MS (element specific detection) and ESI-Q-TOF-MS (molecular structure detection). While arsenobetaine was the dominant As species in the fish, six arsenolipids were detected and identified in the extracts of liver tissue in common bream (Abramis brama), ide (Leuciscus idus), asp (Aspius aspius) and northern pike (Esox lucius). Four arsenic-containing fatty acids (AsFA) and two arsenic-containing hydrocarbons (AsHC) are reported in freshwater fish for the first time. With respect to mercury the more toxic MeHg(+) was the major species in muscle tissue (>90% of total Hg) while in liver Hg(2+) and MeHg(+) were of equal importance. The results show the high relevance of element speciation in addition to the determination of total element concentrations to correctly assess the burden of these two elements in fish.


Subject(s)
Arsenic/analysis , Fatty Acids/chemistry , Fishes , Mercury/analysis , Methylmercury Compounds/analysis , Animals , Chromatography, High Pressure Liquid/methods , Environmental Monitoring , Germany , Hydrocarbons/chemistry , Liver/chemistry , Muscles/chemistry , Rivers
6.
Environ Sci Technol ; 49(16): 10048-56, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26196040

ABSTRACT

Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA.


Subject(s)
Ecosystem , Environmental Monitoring , Hazardous Substances/analysis , Water Pollutants, Chemical/analysis , Water Pollution/analysis , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/toxicity , Diatoms/drug effects , Photosynthesis/drug effects , Toxicity Tests , Trialkyltin Compounds/toxicity
7.
Isotopes Environ Health Stud ; 49(4): 438-53, 2013.
Article in English | MEDLINE | ID: mdl-24313368

ABSTRACT

Under natural conditions, peatlands are generally nitrate-limited. However, recent concerns about an additional N input into peatlands by atmospheric N deposition have highlighted the risk of an increased denitrification activity and hence the likelihood of a rise of emissions of the greenhouse gas nitrous oxide. Therefore, the aim of the present study was to investigate the turnover of added nitrate in a drained and a rewetted peatland using a [(15)N]nitrate-bromide double-tracer method. The double-tracer method allows a separation between physical effects (dilution, dispersion and dislocation) and microbial and chemical nitrate transformation by comparing with the conservative Br(-) tracer. In the drained peat site, low NO3(-) consumption rates have been observed. In contrast, NO3(-) consumption at the rewetted peat site rises rapidly to about 100% within 4 days after tracer application. Concomitantly, the (15)N abundances of nitrite and ammonium in soil water increased and lead to the conclusion that, besides commonly known NO3(-) reduction to nitrite (i.e. denitrification), a dissimilatory nitrate reduction to ammonium has simultaneously taken place. The present study reveals that increasing NO3(-) inputs into rewetted peatlands via atmospheric deposition results in a rapid NO3(-) consumption, which could lead to an increase in N2O emissions into the atmosphere.


Subject(s)
Nitrates/analysis , Soil Pollutants/analysis , Ammonium Compounds/analysis , Bromides/analysis , Environmental Monitoring , Germany , Nitrites/analysis , Nitrogen Isotopes/analysis , Soil/chemistry , Water/chemistry , Wetlands
8.
Talanta ; 82(1): 38-43, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20685432

ABSTRACT

Arsenic is a metalloid well known to be potentially toxic depending of its species. Lipid-soluble arsenicals (arsenolipids) are present in a wide range of biological samples in which they could play a role in the biosynthesis of organoarsenic compounds from inorganic arsenic compounds. Arsenolipids have recently attracted considerable interest. In order to gain deeper insights into the impact of arsenolipids new analytical approaches for reliable determination of this class of arsenic-containing hydrocarbons in various matrices are needed. High concentrations of arsenolipids were found in seafood which served as sample material in this study. We report the investigation of three arsenolipids found in canned cod liver from which they were extracted and purified by solid phase extraction (SPE) using a silica gel column and ethyl acetate/methanol as eluent. Analytical studies were conducted by means of gas chromatography coupled with ICP-MS, MIP-AES and EI-qMS and by TOF-MS. The results obtained by GC-ICP-MS and GC-MIP-AES showed the existence of numerous arsenic compounds in the SPE fractions collected. Three major peaks were found within a retention time window between 10 and 25 min. The presence of arsenic compounds in the fish tissue could be confirmed using GC-EI-qMS analysis. Corresponding information of the molecular weights of the major arsenic species were provided by TOF-MS which allows highly accurate mass determinations. The results showed the presence of the arsenic-containing hydrocarbons with the following molecular formulas: C(17)H(37)AsO (calculated for [M+H](+) 333.2133; found 333.2136; Deltam=0.90 ppm); C(19)H(41)AsO (calculated for [M+H](+) 361.2446; found 361.2446; Deltam=0.00 ppm); C(23)H(37)AsO (calculated for [M+H](+) 405.2133; found 405.2145; Deltam=2.96 ppm). Suggestions for the corresponding structures are discussed.


Subject(s)
Arsenic/analysis , Food Analysis/methods , Food Contamination/analysis , Food, Preserved/analysis , Gadus morhua , Hydrocarbons/chemistry , Liver/cytology , Animals , Arsenic/chemistry , Gas Chromatography-Mass Spectrometry , Lipids/chemistry , Solubility
9.
Environ Pollut ; 158(1): 308-18, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19646800

ABSTRACT

Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m(-2) h(-1) and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R(2): 0.49-0.70) and laboratory (R(2): 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments.


Subject(s)
Mercury/analysis , Water Pollutants, Chemical/analysis , Wetlands , Environmental Monitoring , Germany , Temperature
10.
Environ Sci Pollut Res Int ; 12(3): 133-5, 2005.
Article in English | MEDLINE | ID: mdl-15986995

ABSTRACT

BACKGROUND: Estimations of gaseous mercury volatilization from soils are often complex, stationary and expensive. Our objective was to develop a mobile and more simple, easy to handle and more cost-effective field method allowing rapid estimates of potential Hg emissions from soils. METHODS: The study site is located in Germany, about 100 kilometers south-westerly of Berlin and influenced by the river Elbe and its tributary Saale river. The site is representative for a lot of other floodplain locations at the river Elbe and highly polluted with Hg and other heavy metals. For our study we developed a system consisting of a glass chamber gas, two gold traps, a battery operated pump and a gas meter. Adsorbed total gaseous mercury (TGM) in the gold traps was determined by use of atomic absorption spectrometry (AAS). RESULTS AND DISCUSSION: In contrast to the common used flux chambers we designed a chamber without inlet and named it gas suck up chamber (GSC). TGM fluxes determined with the GSC showed a very close linear correlation (r = 0.993) between the TGM content in the gold traps and the corresponding pumped gas volume. The TGM adsorbed, increased proportional with increasing gas volume indicating homogenous concentrations of gaseous mercury in the soil air sucked. In contrast to the commonly used dynamic flux chamber with the aim of precisely measuring actual fluxes of Hg from a defined soil area, we focused on developing of a measurement system which will allow rapid estimates of potential Hg emissions of a site. Earlier research at the study site indicated a high potential for releasing volatile Hg from the soil to the atmosphere. Indeed, due to the high Hg content of the soil significant amounts of TGM could be detected and no shortage was reached. CONCLUSION: Our initial measurements are still too few in number neither to generalize the achieved results nor discuss controlling factors and processes. However, we are pleased to communicate that the developed GSC is well suited to become an effective sampling set up to rapidly estimate the magnitude of Hg volatilization from soils. OUTLOOK: Further measurements at other polluted locations are necessary to verify the GSC method. In addition the use of a mercury analyzer instead of gold traps is planned for faster risk assessments.


Subject(s)
Environmental Monitoring/methods , Mercury/analysis , Soil Pollutants/analysis , Gases , Mercury/chemistry , Sensitivity and Specificity , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...