Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 48(18): 6091-6099, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30860519

ABSTRACT

Porphyrins represent a valuable class of ligands for G-quadruplex nucleic acids. Herein, we evaluate the binding of cationic porphyrins metallated with gold(iii) to G-quadruplex DNA and we compare it with other porphyrin derivatives. The G-quadruplex stabilization capacity and the selectivity of the various porphyrins were evaluated by biophysical and biochemical assays. The porphyrins were also tested as inhibitors of telomerase. It clearly appeared that the insertion of gold(iii) ion in the center of the porphyrin increases the binding affinity of the porphyrin for the G-quadruplex target. Together with modelling studies, it is possible to propose that the insertion of the square planar gold(iii) ion adds an extra positive charge on the complex and decreases the electron density in the porphyrin aromatic macrocycle, both properties being in favour of stronger electrostatic and π-staking interactions.

2.
Dalton Trans ; 46(27): 8827-8838, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28386609

ABSTRACT

The synthesis of a new trisbenzylsilanephosphine P{(o-C6H4CH2)SiMe2H}3 (1) is shown to proceed with high yields from P(o-tolyl)3. Compound 1 coordinates to the Rh and Ir dimers [MCl(COD)]2 (M = Rh, Ir) in a tetradentate or tridentate fashion, depending on the strict exclusion of water. The dimeric compounds [ClM(SiMe2CH2-o-C6H4)2P(o-C6H4-CH2SiMe2H)]2, 2Rh and 2Ir, feature a tetradentate coordination of the starting ligand with P and two Si atoms as well as a non-classical agostic Si-H group. The presence of adventitious water in the solvents leads to the formation of two new complexes [(µ2-Cl)2M2(SiMe2CH2-o-C6H4)2P(o-C6H4-CH2SiMe2OSiMe2CH2-o-C6H4-)P(SiMe2CH2-o-C6H4)2], 3Rh and 3Ir, which feature a siloxane bridge through Si-H bond breaking in 2. Reaction of [RhCl(COD)]2 with the bisbenzylsilanephosphine PhP{(o-C6H4CH2)SiMe2H}2 leads to the formation of compound 4Rh which features also a dimeric structure with the SiPSi ligand coordinated through the two silicon atoms, one of which occupies the apical position of a square-pyramidal geometry in the solid state, while the second is disposed equatorially trans to π-donor Cl. Finally, bidentate coordination of a PSi ligand is achieved by reaction of [RhCl(COD)]2 with Ph2P{(o-C6H4CH2)SiMe2H} which leads to the monometallic species [RhCl(SiMe2CH2-o-C6H4-PPh2)2], 5Rh, incorporating two chelating PSi ligands and maintaining a Cl ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...