Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biomed Res ; 12: 157, 2023.
Article in English | MEDLINE | ID: mdl-37564439

ABSTRACT

Background: Growing evidence strongly indicates pivotal roles of gender differences in the occurrence and survival rate of patients with bladder cancer, with a higher incidence in males and poorer prognosis in females. Nevertheless, the molecular basis underlying gender-specific differences in bladder cancer remains unknown. The current study has tried to detect key genes contributing to gender differences in bladder cancer patients. Materials and Methods: The gene expression profile of GSE13507 was firstly obtained from the Gene Expression Omnibus (GEO) database. Further, differentially expressed genes (DEGs) were screened between males and females using R software. Protein-protein interactive (PPI) network analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Kaplan-Meier survival analyses were also performed. Results: We detected six hub genes contributing to gender differences in bladder cancer patients, containing IGF2, CCL5, ASPM, CDC20, BUB1B, and CCNB1. Our analyses demonstrated that CCNB1 and BUB1B were upregulated in tumor tissues of female subjects with bladder cancer. Other genes, such as IGF2 and CCL5, were associated with a poor outcome in male patients with bladder cancer. Additionally, three signaling pathways (focal adhesion, rheumatoid arthritis, and human T-cell leukemia virus infection) were identified to be differentially downregulated in bladder cancer versus normal samples in both genders. Conclusion: Our findings suggested that gender differences may modulate the expression of key genes that contributed to bladder cancer occurrence and prognosis.

2.
Pathol Res Pract ; 247: 154542, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244050

ABSTRACT

Considering the burden of cancer, a number of methods have been applied to control or stop it. However, because of drug resistance or cancer recurrence, these treatments usually face failure. Combination of modulation of expression of non-coding RNAs (ncRNAs) with other treatments can increase treatment-sensitivity of tumors but these approaches still face some challenges. Gathering information in this field is a prerequisite to find more efficient cures for cancer. Cancer cells use ncRNAs to enhance uncontrolled proliferation originated from inactivation of cell death routs. In this review article, the main routes of cell death and involved ncRNAs in these routes are discussed. Moreover, extant information in the role of different ncRNAs on cell death pathways involved in the treatment resistance and cancer recurrence is summarized.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Untranslated/genetics , Neoplasms/genetics , Cell Death/genetics
3.
Article in English | MEDLINE | ID: mdl-35718959

ABSTRACT

BACKGROUND: Reactivation of HbF is a potential strategy to ameliorate symptoms of hemoglobinopathies such as sickle cell disease and b-thalassemia. After birth, there is a switch from fetal to adult hemoglobin, for which the molecular mechanisms and key regulators await further understanding in order to develop effective methods for HbF reactivation. Bcl11a, one of the major HbF reactivation regulators, demonstrates no significant changes at transcriptional levels in F erythroblasts compared to the non-HbF expressing cells. Therefore, it is possible that posttranscriptional regulation and epigenetic effects, for which the miRNAs play an important role, are the primary causes of the decreased Bcl11a protein level in adult erythroblasts. OBJECTIVE: This paper aims to determine the differentially expressed mRNAs and miRNAs of erythroblasts in HSCs from the fetal liver and bone marrow. METHODS: Raw high-throughput sequencing data (GSE110936, GSE90878) was downloaded from Gene Expression Omnibus (GEO) database. After RNAseq analysis, several data sets and tools were used to select key genes and examine selection validation. RESULTS: We selected 42 DEmRNAs and nine DEmiRs, including hsa-let-7f-5p, hsa-miR-21-5p, hsamiR- 22-3p, hsa-miR-126-5p, hsa-miR-146b-5p, hsa-miR-181a-5p, hsa-miR-92a-3p, hsa-miR-25-3p and hsa-miR-191-5p. Furthermore, hub genes including hist1h2bl, al133243.2, trim58, abcc13, bpgm, and fam210b were identified in the coexpression network, as well as RPS27A in the PPI network. Functional analysis revealed that these DEmRNAs and DEmiRs might play a role in gene expression regulation at multiple levels. Gene set enrichment analysis, in particular, revealed a possible role for genes in the globin switching process. CONCLUSION: According to our findings, a number of the DEmRNAs and DEmiRs may play significant roles in globin switching regulation and thus have the potential to be applied for HbF reactivation.


Subject(s)
Globins , MicroRNAs , Humans , Gene Expression Regulation , Globins/genetics , Globins/metabolism , MicroRNAs/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
4.
J Cell Physiol ; 234(1): 891-903, 2018 01.
Article in English | MEDLINE | ID: mdl-30076712

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) refer to a group of non-protein-coding RNAs that are usually more than 200 nucleotides. These long transcripts play significant roles in diverse cellular processes, mostly through epigenetic mechanisms. Thus, dysregulation of lncRNAs is associated with various diseases, especially cancer. This study aims to investigate the probable roles of RAB6C-AS1 lncRNA in different cancers. METHODS: Real-time quantitative reverse transcription-polymerase chain reaction was applied for the analysis of RAB6C-AS1 lncRNA amplification in gastric cancer (GC) samples compared with normal ones. Also, several online and offline data sets and tools were used to analyze the relation between RAB6C-AS1 lncRNA and different cancers. RESULTS: The end result of our analyses indicated that RAB6C-AS1 was overexpressed in 40% of the investigated GC specimens. Also, the results demonstrated a true relation between RAB6C-AS1 overexpression and higher GC tumor grades. However, bioinformatic analyses showed that while RAB6C-AS1 possibly functions as an oncogene in some cancer types, including prostate and breast cancers, it might have a tumor suppressive function in some others including brain tumors. CONCLUSIONS: We found that RAB6C-AS1 lncRNA is mostly overexpressed in GC. Also, based on bioinformatic and systems biology analyses, RAB6C-AS1 might function either as an oncogenic factor or tumor suppressor in a tissue-specific manner. Thus, RAB6C-AS1 could be considered as a candidate biomarker for various malignancies, especially prostate and brain cancers. According to our results, RAB6C-AS1 has a notable prognostic value for patients with brain lower grade glioma.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Glioma/genetics , RNA, Long Noncoding/genetics , Cell Proliferation/genetics , Computational Biology , Gene Expression Regulation, Neoplastic/genetics , Glioma/pathology , Humans , Prognosis , rab GTP-Binding Proteins/genetics
5.
J Biosci ; 41(3): 497-506, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27581940

ABSTRACT

Cancer recurrence is believed to be one of the major reasons for the failure of cancer treatment strategies. This biological phenomenon could arise from the incomplete eradication of tumour cells after chemo- and radiotherapy. Recent developments in the design of models reflecting cancer recurrence and in vivo imaging techniques have led researchers to gain a deeper and more detailed insight into the mechanisms underlying tumour relapse. Here, we provide an overview of three important drivers of recurrence including cancer stem cells (CSCs), neosis, and phoenix rising. The survival of cancer stem cells is well recognized as one of the primary causes of therapeutic resistance in malignant cells. CSCs have a relatively latent metabolism and show resistance to therapeutic agents through a variety of routes. Neosis has proven to be as an important mechanism behind tumour self-proliferation after treatment which gives rise to the expansion of tumour cells in the injured site via production of Raju cells. Phoenix rising is a prorecurrence pathway through which apoptotic cancer cells send strong signals to the neighbouring diseased cells leading to their multiplication. The mechanisms involved in therapeutic resistance and tumour recurrence have not yet been fully understood and mostly remain unexplained. Without doubt, an improved understanding of the cellular machinery contributing to recurrence will pave the way for the development of novel, sophisticated and effective antitumour therapeutic strategies which can eradicate tumour without the threat of relapse.


Subject(s)
Neoplasm Recurrence, Local/genetics , Neoplasms/genetics , Neoplastic Stem Cells/pathology , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Cell Proliferation/genetics , Humans , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...