Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(5): e0267626, 2022.
Article in English | MEDLINE | ID: mdl-35511804

ABSTRACT

Microalgae have garnered widespread attention as a sustainable source of pharmaceuticals and nutraceuticals. As for extracting lipids from microalgae, the combination of microwave-assisted extraction (MAE) and ionic liquids (IL) is shown to be promising. However, such an undertaking usually requires a large consumption of expensive ILs. This study innovatively employs tetramethyl ammonium chloride ([TMAm][Cl]) as an additive in water medium to associate with microwave-assisted ionic liquid extraction (MAILE) in extracting lipids from Nannochloropsis oceanica (N. oceanica) microalgae. In extraction, knowledge of reaction kinetics is crucial since it provides the foundation for developing, controlling, and improving the processes of extraction. Herein, using MAILE, lipids are extracted from N. oceanica microalgae and transesterified to eicosapentaenoic acid (EPA). Mass transfer kinetics are, therefore, investigated using the first and second-order rate law and Patricelli's model. In the development of models, the influence of temperature (60-90°C) and reaction time (1-25 min) on EPA extraction is empirically evaluated. From the thermodynamic study, the positive values of ΔS (+0.10 kJ mol-1K-1) and ΔH (+32.50 kJ mol-1) and the negative value of ΔG (-1.68 to -4.75 kJ mol-1) confirm that this process is endothermic in nature, irreversible and spontaneous. MAILE proves to be a promising approach for the extraction of high-quality EPAs. Due to its low cost, rapid operation, and environmental friendliness, it is seen to be suitable for both pharmaceutical and nutraceutical applications.


Subject(s)
Ionic Liquids , Microalgae , Stramenopiles , Ammonium Chloride , Eicosapentaenoic Acid , Kinetics , Microwaves , Thermodynamics
2.
Int J Mol Sci ; 21(19)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023274

ABSTRACT

Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs). Introducing redox additives into electrolytes is an effective approach to promote battery performance. With the addition of 450 ppm KPS, remarkable improvement in anodic currents corresponding to zinc (Zn) dissolution and limited passivation of the Zn surface is observed, thus indicating its strong effect on the redox reaction of Zn. Besides, the addition of 450 ppm KPS reduces the corrosion rate of Zn, enhances surface reactions and decreases the solution resistance. However, excess KPS (900 and 1350 ppm) has a negative effect on rechargeable ZAFBs, which leads to a shorter cycle life and poor cyclability. The rechargeable ZAFB, using 450 ppm KPS, exhibits a highly stable charge/discharge voltage for 800 cycles. Overall, KPS demonstrates great promise for the enhancement of the charge/discharge performance of rechargeable ZABs.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Potassium Compounds/chemistry , Sulfates/chemistry , Zinc/chemistry , Air , Electrolytes/pharmacology , Potassium Compounds/pharmacology , Sulfates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...