Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 15123, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816789

ABSTRACT

Physical reservoir computing is a framework for brain-inspired information processing that utilizes nonlinear and high-dimensional dynamics in non-von-Neumann systems. In recent years, spintronic devices have been proposed for use as physical reservoirs, but their practical application remains a major challenge, mainly because thermal noise prevents them from retaining short-term memory, the essence of neuromorphic computing. Here, we propose a framework for spintronic physical reservoirs that exploits frequency domain dynamics in interacting spins. Through the effective use of frequency filters, we demonstrate, for a model of frustrated magnets, both robustness to thermal fluctuations and feasibility of frequency division multiplexing. This scheme can be coupled with parallelization in spatial domain even down to the level of a single spin, yielding a vast number of spatiotemporal computational units. Furthermore, the nonlinearity via the exchange interaction allows information processing among different frequency threads. Our findings establish a design principle for high-performance spintronic reservoirs with the potential for highly integrated devices.

2.
Nat Commun ; 14(1): 3399, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37311774

ABSTRACT

Amorphous semiconductors are widely applied to electronic and energy-conversion devices owing to their high performance and simple fabrication processes. The topological concept of the Berry curvature is generally ill-defined in amorphous solids, due to the absence of long-range crystalline order. Here, we demonstrate that the Berry curvature in the short-range crystalline order of kagome-lattice fragments effectively contributes to the anomalous electrical and magneto-thermoelectric properties in Fe-Sn amorphous films. The Fe-Sn films on glass substrates exhibit large anomalous Hall and Nernst effects comparable to those of the single crystals of topological semimetals Fe3Sn2 and Fe3Sn. With modelling, we reveal that the Berry curvature contribution in the amorphous state likely originates from randomly distributed kagome-lattice fragments. This microscopic interpretation sheds light on the topology of amorphous materials, which may lead to the realization of functional topological amorphous electronic devices.

3.
Adv Sci (Weinh) ; 9(10): e2105452, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35088568

ABSTRACT

Magnetic skyrmion is a topologically stable particle-like swirling spin texture potentially suitable for high-density information bit, which was first observed in noncentrosymmetric magnets with Dzyaloshinskii-Moriya interaction. Recently, nanometric skyrmion has also been discovered in centrosymmetric rare-earth compounds, and the identification of their skyrmion formation mechanism and further search of nontrivial spin textures are highly demanded. Here, magnetic structures in a prototypical skyrmion-hosting centrosymmetric tetragonal magnet GdRu2 Si2 is exhaustively studied by performing the resonant X-ray scattering experiments. A rich variety of double-Q magnetic structures, including the antiferroic order of meron(half-skyrmion)/anti-meron-like textures with fractional local topological charges are identified. The observed intricate magnetic phase diagram is successfully reproduced by the theoretical framework considering the four-spin interaction mediated by itinerant electrons and magnetic anisotropy. The present results will contribute to the better understanding of the novel skyrmion formation mechanism in this centrosymmetric rare-earth compound, and suggest that itinerant electrons can ubiquitously host a variety of unique multiple-Q spin orders in a simple crystal lattice system.

4.
Nat Commun ; 12(1): 6927, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34853320

ABSTRACT

The magnetic skyrmion crystal is a periodic array of a swirling topological spin texture. Since it is regarded as an interference pattern by multiple helical spin density waves, the texture changes with the relative phase shifts among the constituent waves. Although such a phase degree of freedom is relevant to not only magnetism but also transport properties, its effect has not been elucidated thus far. We here theoretically show that a phase shift in the skyrmion crystals leads to a tetra-axial vortex crystal and a meron-antimeron crystal, both of which show a staggered pattern of the scalar spin chirality and give rise to nonreciprocal transport phenomena without the spin-orbit coupling. We demonstrate that such a phase shift can be driven by exchange interactions between the localized spins, thermal fluctuations, and long-range chirality interactions in spin-charge coupled systems. Our results provide a further diversity of topological spin textures and open a new field of emergent electromagnetism by the phase shift engineering.

5.
J Phys Condens Matter ; 33(44)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34343975

ABSTRACT

Spin textures with nontrivial topology, such as vortices and skyrmions, have attracted attention as a source of unconventional magnetic, transport, and optical phenomena. Recently, a new generation of topological spin textures has been extensively studied in itinerant magnets; in contrast to the conventional ones induced, e.g., by the Dzyaloshinskii-Moriya interaction in noncentrosymmetric systems, they are characterized by extremely short magnetic periods and stable even in centrosymmetric systems. Here we review such new types of topological spin textures with particular emphasis on their stabilization mechanism. Focusing on the interplay between charge and spin degrees of freedom in itinerant electron systems, we show that itinerant frustration, which is the competition among electron-mediated interactions, plays a central role in stabilizing a variety of topological spin crystals including a skyrmion crystal with unconventional high skyrmion number, meron crystals, and hedgehog crystals. We also show that the essential ingredients in the itinerant frustration are represented by bilinear and biquadratic spin interactions in momentum space. This perspective not only provides a unified understanding of the unconventional topological spin crystals but also stimulates further exploration of exotic topological phenomena in itinerant magnets.

6.
Phys Rev Lett ; 126(11): 119901, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33798389

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.119.127204.

7.
Nat Commun ; 11(1): 5925, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33230104

ABSTRACT

Magnetic skyrmions were thought to be stabilised only in inversion-symmetry breaking structures, but skyrmion lattices were recently discovered in inversion symmetric Gd-based compounds, spurring questions of the stabilisation mechanism. A natural consequence of a recent theoretical proposal, a coupling between itinerant electrons and localised magnetic moments, is that the skyrmions are amenable to detection using even non-magnetic probes such as spectroscopic-imaging scanning tunnelling microscopy (SI-STM). Here SI-STM observations of GdRu2Si2 reveal patterns in the local density of states that indeed vary with the underlying magnetic structures. These patterns are qualitatively reproduced by model calculations which assume exchange coupling between itinerant electrons and localised moments. These findings provide a clue to understand the skyrmion formation mechanism in GdRu2Si2.

8.
Nano Lett ; 20(6): 4625-4630, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32407633

ABSTRACT

Van der Waals (vdW) heterostructures have attracted great interest because of their rich material combinations. The discovery of two-dimensional magnets has provided a new platform for magnetic vdW heterointerfaces; however, research on magnetic vdW heterointerfaces has been limited to those with ferromagnetic surfaces. Here, we report a magnetic vdW heterointerface using layered intralayer-antiferromagnetic MPSe3 (M = Mn, Fe) and monolayer transition-metal dichalcogenides (TMDs). We found an anomalous upshift of the excitonic peak in monolayer TMDs below the antiferromagnetic transition temperature in the MPSe3, capturing a signature of the interlayer exciton-magnon coupling. This is a concept extended from single materials to heterointerfaces. Moreover, this coupling strongly depends on the in-plane magnetic structure and stacking direction, showing its sensitivity to their magnetic interfaces. Our finding offers an opportunity to investigate interactions between elementary excitations in different materials across interfaces and to search for new functions of magnetic vdW heterointerfaces.

9.
J Phys Condens Matter ; 32(40): 404001, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32235048

ABSTRACT

The Kitaev spin liquid provides a rare example of well-established quantum spin liquids in more than one dimension. It is obtained as the exact ground state of the Kitaev spin model with bond-dependent anisotropic interactions. The peculiar interactions can be yielded by the synergy of spin-orbit coupling and electron correlations for specific electron configuration and lattice geometry, which is known as the Jackeli-Khaliullin mechanism. Based on this mechanism, there has been a fierce race for the materialization of the Kitaev spin liquid over the last decade, but the candidates have been still limited mostly to 4d- and 5d-electron compounds including cations with the low-spin d 5 electron configuration, such as Ir4+ and Ru3+. Here we discuss recent efforts to extend the material perspective beyond the Jackeli-Khaliullin mechanism, by carefully reexamining the two requisites, formation of the j eff = 1/2 doublet and quantum interference between the exchange processes, for not only d- but also f-electron systems. We present three examples: the systems including Co2+ and Ni3+ with the high-spin d 7 electron configuration, Pr4+ with the f 1-electron configuration, and polar asymmetry in the lattice structure. In particular, the latter two are intriguing since they may realize the antiferromagnetic Kitaev interactions, in contrast to the ferromagnetic ones in the existing candidates. This partial overview would stimulate further material exploration of the Kitaev spin liquids and its topological properties due to fractional excitations.

10.
Nat Commun ; 10(1): 4305, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541112

ABSTRACT

Spin current-a flow of electron spins without a charge current-is an ideal information carrier free from Joule heating for electronic devices. The celebrated spin Hall effect, which arises from the relativistic spin-orbit coupling, enables us to generate and detect spin currents in inorganic materials and semiconductors, taking advantage of their constituent heavy atoms. In contrast, organic materials consisting of molecules with light elements have been believed to be unsuited for spin current generation. Here we show that a class of organic antiferromagnets with checker-plate type molecular arrangements can serve as a spin current generator by applying a thermal gradient or an electric field, even with vanishing spin-orbit coupling. Our findings provide another route to create a spin current distinct from the conventional spin Hall effect and open a new field of spintronics based on organic magnets having advantages of small spin scattering and long lifetime.

11.
Phys Rev Lett ; 122(14): 147602, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31050476

ABSTRACT

We report our theoretical results on the order parameters for the pyrochlore metal Cd_{2}Re_{2}O_{7}, which undergoes enigmatic phase transitions with inversion symmetry breaking. By carefully examining active electronic degrees of freedom based on the lattice symmetry, we propose that two parity-breaking phases at ambient pressure are described by unconventional multipoles, electric toroidal quadrupoles (ETQs) with different components, x^{2}-y^{2} and 3z^{2}-r^{2}, in the pyrochlore tetrahedral unit. We elucidate that the ETQs are activated by bond or spin-current order on Re─Re bonds. Our ETQ scenario provides a key to reconciling the experimental contradictions, by measuring ETQ specific phenomena, such as peculiar spin splittings in the electronic band structure, magnetocurrent effect, and nonreciprocal transport under a magnetic field.

12.
J Phys Condens Matter ; 31(32): 323001, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31140447

ABSTRACT

The pyrochlore oxides [Formula: see text]O7 exhibit a complex interplay between geometrical frustration, electronic correlations, and spin-orbit coupling (SOC), due to the lattice structure and active charge, spin, and orbital degrees of freedom. Understanding the properties of these materials is a theoretical challenge, because their intricate nature depends on material-specific details and quantum many-body effects. Here we review our recent studies based on first-principles calculations and quantum many-body theories for 4d and 5d pyrochlore oxides with B = Mo, Os, and Ir. In these studies, the SOC and local electron correlations are treated within the local density approximation (LDA) + U and LDA + dynamical mean-field theory formalisms. We also discuss the technical aspects of these calculations.

13.
Phys Rev Lett ; 121(13): 137202, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312100

ABSTRACT

We theoretically study noncoplanar spin textures in polar magnetic conductors. Starting from the Kondo lattice model with the Rashba spin-orbit coupling, we derive an effective spin model with generalized Ruderman-Kittel-Kasuya-Yosida interactions including the anisotropic and antisymmetric exchange interactions. By performing simulated annealing for the effective model, we find that a vortex crystal of Néel type is stabilized even in the absence of a magnetic field. Moreover, we demonstrate that a Bloch-type vortex crystal, which is usually associated with the Dresselhaus spin-orbit coupling, can also be realized in our Rashba-based model. A magnetic field turns the vortex crystals into Néel- and Bloch-type Skyrmion-like crystals. Our results underscore that the interplay between the spin-orbit coupling and itinerant magnetism brings fertile possibilities of noncoplanar magnetic orderings.

14.
Phys Rev Lett ; 118(14): 147205, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28430467

ABSTRACT

Magnetic Skyrmions are swirling spin textures with topologically protected noncoplanarity. Recently, Skyrmions with the topological number of unity have been extensively studied in both experiment and theory. We here show that a Skyrmion crystal with an unusually high topological number of two is stabilized in itinerant magnets at a zero magnetic field. The results are obtained for a minimal Kondo lattice model on a triangular lattice by an unrestricted large-scale numerical simulation and variational calculations. We find that the topological number can be switched by a magnetic field as 2↔1↔0. The Skyrmion crystals are formed by the superpositions of three spin density waves induced by the Fermi surface effect, and hence, the size of Skyrmions can be controlled by the band structure and electron filling. We also discuss the charge and spin textures of itinerant electrons in the Skyrmion crystals which are directly obtained in our numerical simulations.

15.
Phys Rev Lett ; 118(13): 137203, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28409982

ABSTRACT

While phase transitions between magnetic analogs of the three states of matter-a long-range ordered state, paramagnet, and spin liquid-are extensively studied, the possibility of "liquid-liquid" transitions, namely, between different spin liquids, remains elusive. By introducing the additional Ising coupling into the honeycomb Kitaev model with bond asymmetry, we discover that the Kitaev spin liquid turns into a spin-nematic quantum paramagnet before a magnetic order is established by the Ising coupling. The quantum phase transition between the two liquid states accompanies a topological change driven by fractionalized excitations, the Z_{2} gauge fluxes, and is of first order. At finite temperatures, this yields a persisting first-order transition line that terminates at a critical point located deep inside the regime where quantum spins are fractionalized. It is suggested that similar transitions may occur in other perturbed Kitaev magnets with bond asymmetry.

16.
Phys Rev Lett ; 118(10): 107601, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339271

ABSTRACT

Magnetoelectric properties are studied by a combined experimental and theoretical study of a quasi-two-dimensional material composed of square cupolas, Ba(TiO)Cu_{4}(PO_{4})_{4}. The magnetization is measured up to the field above the saturation, and several anomalies are observed depending on the field directions. We propose a S=1/2 spin model with Dzyaloshinskii-Moriya interactions, which reproduces the full magnetization curves well. Elaborating the phase diagram of the model, we show that the anomalies are explained by magnetoelectric phase transitions. Our theory also accounts for the scaling of the dielectric anomaly observed in the experiments. The results elucidate the crucial role of the in-plane component of Dzyaloshinskii-Moriya interactions, which is induced by the noncoplanar buckling of a square cupola. We also predict a "hidden" phase and another magnetoelectric response, both of which appear in a nonzero magnetic field.

17.
Phys Rev Lett ; 119(12): 127204, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29341648

ABSTRACT

In conventional insulating magnets, heat is carried by magnons and phonons. In contrast, when the magnets harbor a quantum spin liquid state, emergent quasiparticles from the fractionalization of quantum spins can carry heat. Here, we investigate unconventional thermal transport yielded by such exotic carriers, in both longitudinal and transverse components, for the Kitaev model, whose ground state is exactly shown to be a quantum spin liquid with fractional excitations described as itinerant Majorana fermions and localized Z_{2} fluxes. We find that the longitudinal thermal conductivity exhibits a single peak at a high temperature, while the nonzero frequency component has a peak at a low temperature, reflecting the spin fractionalization. On the other hand, we show that the transverse thermal conductivity is induced by the magnetic field in a wide temperature range up to the energy scale of the bare exchange coupling; while increasing temperature, the transverse response divided by temperature decreases from the quantized value expected for the topologically nontrivial ground state and shows nonmonotonic temperature dependence. These characteristic behaviors provide experimentally accessible evidence of fractional excitations in the proximity to the Kitaev quantum spin liquid.

18.
Phys Rev Lett ; 117(15): 157203, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768327

ABSTRACT

Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

19.
J Phys Condens Matter ; 28(39): 395601, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27502319

ABSTRACT

The spin-orbit coupling in the absence of spatial inversion symmetry plays an important role in realizing intriguing electronic states in solids, such as topological insulators and unconventional superconductivity. Usually, the inversion symmetry breaking is inherent in the lattice structures, and hence, it is not easy to control these interesting properties by external parameters. We here theoretically investigate the possibility of generating the spin-orbital entanglement by spontaneous electronic ordering caused by electron correlations. In particular, we focus on the centrosymmetric lattices with local asymmetry at the lattice sites, e.g. zigzag, honeycomb, and diamond structures. In such systems, conventional staggered orders, such as charge order and antiferromagnetic order, break the inversion symmetry and activate the antisymmetric spin-orbit coupling, which is hidden in a sublattice-dependent form in the paramagnetic state. Considering a minimal two-orbital model on a honeycomb structure, we scrutinize the explicit form of the antisymmetric spin-orbit coupling for all the possible staggered charge, spin, orbital, and spin-orbital orders. We show that the complete table is useful for understanding of spin-valley-orbital physics, such as spin and valley splitting in the electronic band structure and generalized magnetoelectric responses in not only spin but also orbital and spin-orbital channels, reflecting in peculiar magnetic, elastic, and optical properties in solids.

20.
Phys Rev Lett ; 116(5): 056402, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26894723

ABSTRACT

Motivated by the colossal negative thermal expansion recently found in BiNiO_{3}, the valence transition accompanied by the charge transfer between the Bi and Ni sites is theoretically studied. We introduce an effective model for Bi-6s and Ni-3d orbitals taking into account the valence skipping of Bi cations, and investigate the ground-state and finite-temperature phase diagrams within the mean-field approximation. We find that the valence transition is caused by commensurate locking of the electron filling in each orbital associated with charge and magnetic orderings, and the critical temperature and the nature of the transitions are strongly affected by the relative energy between the Bi and Ni levels and the effective electron-electron interaction in the Bi sites. The obtained phase diagram well explains the temperature- and pressure-driven valence transitions in BiNiO_{3} and the systematic variation of valence states for a series of Bi and Pb perovskite oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...