Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Res ; 12(1): 57, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36075998

ABSTRACT

BACKGROUND: To explore the feasibility of short-time-window Ki imaging using a population-based arterial input function (IF) and optimized Bayesian penalized likelihood (BPL) reconstruction as a practical alternative to long-time-window Ki imaging with an individual patient-based IF. Myocardial Ki images were generated from 73 dynamic 18F-FDG-PET/CT scans of 30 patients with cardiac sarcoidosis. For each dynamic scan, the Ki images were obtained using the IF from each individual patient and a long time window (10-60 min). In addition, Ki images were obtained using the normalized averaged population-based IF and BPL algorithms with different beta values (350, 700, and 1000) with a short time window (40-60 min). The visual quality of each image was visually rated using a 4-point scale (0, not visible; 1, poor; 2, moderate; and 3, good), and the Ki parameters (Ki-max, Ki-mean, Ki-volume) of positive myocardial lesions were measured independently by two readers. Wilcoxon's rank sum test, McNemar's test, or linear regression analysis were performed to assess the differences or relationships between two quantitative variables. RESULTS: Both readers similarly rated 51 scans as positive (scores = 1-3) and 22 scans as negative (score = 0) for all four Ki images. Among the three types of population-based IF Ki images, the proportion of images with scores of 3 was highest with a beta of 1000 (78.4 and 72.5%, respectively) and lowest with a beta of 350 (33.3 and 23.5%) for both readers (all p < 0.001). The coefficients of determination between the Ki parameters obtained with the individual patient-based IF and those obtained with the population-based IF were highest with a beta of 1000 for both readers (Ki-max, 0.91 and 0.92, respectively; Ki-mean, 0.91 and 0.92, respectively; Ki-volume, 0.75 and 0.60, respectively; and all p < 0.001). CONCLUSIONS: Short-time-window Ki images with a population-based IF reconstructed using the BPL algorithm and a high beta value were closely correlated with long-time-window Ki images generated with an individual patient-based IF. Short-time-window Ki images using a population-based IF and BPL reconstruction might represent practical alternatives to long-time-window Ki images generated using an individual patient-based IF.

2.
J Appl Toxicol ; 39(2): 221-230, 2019 02.
Article in English | MEDLINE | ID: mdl-30175511

ABSTRACT

Methylmercury (MeHg) is known to cause neurobehavioral impairment in human and experimental animals. We previously reported that MeHg (5 mg Hg/kg) induced severe neurobehavioral dysfunction in 4-week-old KK-Ay mice, although it is difficult to evaluate quantitatively the neurobehavioral impairment in MeHg-treated KK-Ay mice because of their obesity. The aim of this study was to evaluate MeHg-induced neurobehavioral dysfunction in KK-Ay mice using the dynamic weight-bearing test, which analyzes the animal's weight distribution between the four limbs. Male 12-week-old KK-Ay mice were treated with MeHg (5 mg Hg/kg) three times per week for 5 weeks. Body weight loss began after approximately 2 weeks of MeHg treatment, and decreased significantly at 4 weeks. Seven of the nine MeHg-treated mice exhibited overt neurological symptoms such as ataxia and gait disturbance. The weight-bearing load was lower for the forelimb than for the hindlimb at baseline and until 1 week after MeHg treatment was initiated. In weeks 2-4, the dynamic weight-bearing loads on the forelimb and hindlimb were similar. The load on the forelimb exceeded the load on the hindlimb after 5 weeks of treatment. This finding indicates that the dynamic weight-bearing test is useful for semi-quantitative evaluation of neurobehavioral impairment in MeHg-treated rodents, and is less stressful for the animals. Infiltration of CD204-positive macrophages was observed in the sciatic nerve of MeHg-treated mice, suggesting that CD204 can serve as a useful marker of tissue injury in peripheral nerves and a possible target in regenerating peripheral nerves and controlling neuropathies.


Subject(s)
Behavior, Animal/drug effects , Mercury Poisoning, Nervous System/physiopathology , Methylmercury Compounds/toxicity , Motor Activity/drug effects , Weight-Bearing/physiology , Animals , Brain/drug effects , Brain/metabolism , Male , Mercury Poisoning, Nervous System/blood , Mercury Poisoning, Nervous System/urine , Methylmercury Compounds/blood , Methylmercury Compounds/urine , Mice , Mice, Inbred Strains , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism
3.
J Appl Toxicol ; 37(5): 611-620, 2017 05.
Article in English | MEDLINE | ID: mdl-27917510

ABSTRACT

The accumulation of macrophages has been observed around lesions of the brain in patients with Minamata disease. In this condition, mercury has been detected histochemically in macrophages throughout the brain. However, the role of macrophages in the neurotoxicity of methylmercury (MeHg) and the molecular mechanisms of their response to MeHg exposure remain to be elucidated. Here, we investigated how MeHg affects the expression of proinflammatory cytokines such as interleukin (IL)-6 and IL-8 in cultured human U937 macrophages. Compared with controls, IL-6 and IL-8 mRNA expression was maximally induced in U937 macrophages after treatment with 10 µM MeHg for 6 h. The protein secretion of IL-6 and IL-8 was significantly stimulated by MeHg in U937 macrophages. Results from luciferase reporter assay indicated functional activation of nuclear factor kappa B and the involvement of subunit RelA and p50 in MeHg-induced IL-6 and IL-8 activation, which was confirmed by siRNA knockdown experiments. MeHg exposure at 4 µM also significantly induced IL-8 expression in U-87 MG cells at mRNA and protein level, indicating that IL-8 induction might be a general mode of action of MeHg treatment among different cell types. These results indicate a possible involvement of an early inflammatory response, including IL-6 and IL-8 expression in the pathogenesis of MeHg. N-acetyl-l-cysteine suppressed MeHg-induced activation of IL-6 and IL-8 mRNA expression in U937 macrophages, indicating the effectiveness of N-acetyl-l-cysteine as a therapeutic drug in MeHg-induced inflammation. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Macrophages/drug effects , Methylmercury Compounds/toxicity , NF-kappa B p50 Subunit/metabolism , Transcription Factor RelA/metabolism , Acetylcysteine/pharmacology , Cell Survival/drug effects , Free Radical Scavengers/pharmacology , Gene Knockdown Techniques , Humans , Interleukin-6/genetics , Interleukin-8/genetics , Methylmercury Compounds/antagonists & inhibitors , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/genetics , NF-kappa B p50 Subunit/genetics , Transcription Factor RelA/genetics , U937 Cells
4.
Dev Growth Differ ; 56(9): 640-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25330272

ABSTRACT

Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/ß-catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage-stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA-injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8-KDEL) could dorsalize Xenopus embryos. Finally, Wnt8-induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.


Subject(s)
Autocrine Communication/physiology , Embryo, Nonmammalian/metabolism , Oocytes/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Animals , Embryo, Nonmammalian/cytology , Oocytes/cytology , Protein Sorting Signals/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Wnt Proteins/biosynthesis , Wnt Proteins/genetics , Xenopus Proteins/biosynthesis , Xenopus Proteins/genetics , Xenopus laevis , beta Catenin/genetics
5.
J Appl Toxicol ; 34(8): 914-23, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24243536

ABSTRACT

We examined the toxic effects of methylmercury (MeHg) in KK-Ay type 2 diabetic mice to clarify how metabolic changes associated with type 2 diabetes mellitus affect MeHg toxicity. MeHg (5 mg Hg kg (-1) day(-1) p.o.) was given to 4-week-old male KK-Ay and C57BL/6J (BL/6) mice three times per week for 6 weeks. Average body weights (BW) of vehicle-treated BL/6 and KK-Ay mice were 16.3 and 16.4 g respectively on the first day, and 24.8 and 42.3 g respectively on the last day of the experiment. MeHg-treated KK-Ay mice began to lose weight about 5 weeks after MeHg administration. Six of seven MeHg-treated KK-Ay mice showed hind-limb clasping in the final stage of the experiment. The mean blood mercury level of MeHg-treated KK-Ay mice reached a maximum of 9.8 µg ml(-1) , whereas that of the MeHg-treated BL/6 mice was 2.8 µg ml(-1) after 10 days of treatment. The average total mercury concentrations in the cerebrum and epididymal fat pad were 7.4 and 0.57 µg g(-1) , respectively, for BL/6 mice and 27 and 1.6 µg g(-1) , respectively, for KK-Ay mice. In MeHg-treated KK-Ay mice with neurological symptoms, CD204-positive macrophages were observed in the brain, kidney and spleen, indicating CD204 could be a marker for injured tissues. BW loss and significant pathological changes were not observed in other groups of mice. These results indicate that body fat gain in type 2 diabetes mellitus and low mercury accumulation in adipose tissue increased MeHg concentrations in organs and enhanced toxicity in KK-Ay mice at the same dose of MeHg per BW.


Subject(s)
Diabetes Mellitus, Type 2/blood , Methylmercury Compounds/toxicity , Obesity/blood , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose , Body Weight , Brain/drug effects , Brain/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Immunohistochemistry , Kidney/drug effects , Kidney/metabolism , Male , Methylmercury Compounds/blood , Mice , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/pathology , Pancreas/drug effects , Pancreas/metabolism , Spleen/drug effects , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...