Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 100(3): 297-303, 2002 Jul 20.
Article in English | MEDLINE | ID: mdl-12115544

ABSTRACT

Expression of the Wilms' tumor gene WT1 in de novo lung cancer was examined using quantitative real-time RT-PCR and immunohistochemistry. Overexpression of the WT1 gene was detected by RT-PCR in 54/56 (96%) de novo non-small cell lung cancers examined and confirmed by detection of WT1 protein with an anti-WT1 antibody. Overexpression of the WT1 gene was also demonstrated in 5/6 (83%) de novo small cell lung cancers by immunohistochemistry. Furthermore, when the WT1 gene was examined for mutations by direct sequencing of genomic DNA in 7 lung cancers, no mutations were found. These results suggest that the nonmutated, wild-type WT1 gene plays an important role in tumorigenesis of de novo lung cancers and may provide us with the rationale for new therapeutic strategies for lung cancer targeting the WT1 gene and its products.


Subject(s)
Lung Neoplasms/genetics , WT1 Proteins/genetics , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/pathology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Neoplasm Staging , RNA Splicing
2.
Br J Haematol ; 116(2): 409-20, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11841446

ABSTRACT

The Wilms' tumour gene, WT1, is expressed at high levels in leukaemia cells and plays an important role in leukaemogenesis. WT1 is also expressed in human normal CD34+ bone marrow (BM) cells at about 100 times lower levels than in leukaemia cells. To identify and characterize WT1-expressing cells in CD34+ BM cells, they were sorted into single cells and analysed for WT1 expression using two kinds of single-cell reverse transcriptase polymerase chain reaction (RT-PCR) methods. Using the semiquantitative single-cell polyA-PCR + sequence-specific (SS)-PCR method, WT1 expression was detected in four (1.3%) out of 319 CD34+ BM single cells. To confirm the above results, a single-cell nested sequence-specific (NSS)-RT-PCR method that was less quantitative but more sensitive than the polyA-PCR + SS-PCR method was also performed, and WT1 expression was detected in 15 (1.1%) out of 1315 CD34+ BM single cells. In total, WT1 expression was found in 19 (1.2%) out of 1634 CD34+ BM single cells. No significant differences in the frequencies of WT1-expressing cells were found between CD34+CD38- and CD34+CD38+ BM single cells. Furthermore, WT1-expressing CD34+ BM single cells expressed WT1 at levels similar to those in K562 leukaemia single cells. Analysis of lineage-specific and cell cycle gene expression in WT1-expressing CD34+ BM single cells showed that the WT1 gene could be expressed in both uncommitted, dormant CD34+CD38- and lineage-committed, proliferating CD34+CD38+ BM cells. Our results could indicate that these WT1-expressing CD34+ BM cells were normal counterparts of leukaemia cells.


Subject(s)
Antigens, CD34 , Hematopoietic Stem Cells/metabolism , Leukemia/genetics , WT1 Proteins/genetics , Flow Cytometry/methods , Gene Expression , Humans , Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...