Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3136, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816280

ABSTRACT

The vertebrate gene repertoire is characterized by "cryptic" genes whose identification has been hampered by their absence from the genomes of well-studied species. One example is the Bmp16 gene, a paralog of the developmental key genes Bmp2 and -4. We focus on the Bmp2/4/16 group of genes to study the evolutionary dynamics following gen(om)e duplications with special emphasis on the poorly studied Bmp16 gene. We reveal the presence of Bmp16 in chondrichthyans in addition to previously reported teleost fishes and reptiles. Using comprehensive, vertebrate-wide gene sampling, our phylogenetic analysis complemented with synteny analyses suggests that Bmp2, -4 and -16 are remnants of a gene quartet that originated during the two rounds of whole-genome duplication (2R-WGD) early in vertebrate evolution. We confirm that Bmp16 genes were lost independently in at least three lineages (mammals, archelosaurs and amphibians) and report that they have elevated rates of sequence evolution. This finding agrees with their more "flexible" deployment during development; while Bmp16 has limited embryonic expression domains in the cloudy catshark, it is broadly expressed in the green anole lizard. Our study illustrates the dynamics of gene family evolution by integrating insights from sequence diversification, gene repertoire changes, and shuffling of expression domains.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 6/genetics , Evolution, Molecular , Fish Proteins/genetics , Fishes/genetics , Zebrafish Proteins/genetics , Animals , Humans , Phylogeny , Zebrafish/genetics
2.
Sci Data ; 5: 180200, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30295675

ABSTRACT

Chondrichthyans (cartilaginous fishes) exhibit highly variable reproductive styles, categorized as viviparity and oviparity. Among these, species with oviparity provide an enormous potential of molecular experimentation with stable sample supply which does not demand the sacrifices of live mothers. Cartilaginous fishes are divided into two subclasses, chimaeras (Holocephali) and elasmobranchs (Elasmobranchii), and the latter consists of two monophyletic groups, Batoidea (rays, skates and torpedoes) and Selachimorpha (sharks). Here we report transcriptome assemblies of the ocellate spot skate Okamejei kenojei, produced by strand-specific RNA-seq of its embryonic tissues. We obtained a total of 325 million illumina short reads from libraries prepared using four different tissue domains and assembled them all together. Our assembly result confirmed the species authenticity and high continuity of contig sequences. Also, assessment of its coverage of pre-selected one-to-one orthologs supported high diversity of transcripts in the assemblies. Our products are expected to provide a basis of comparative molecular studies encompassing other chondrichthyan species with emerging genomic and transcriptomic sequence information.


Subject(s)
Embryo, Nonmammalian/metabolism , Skates, Fish/embryology , Skates, Fish/metabolism , Transcriptome , Animals , Sequence Analysis, RNA , Skates, Fish/classification
3.
Nat Ecol Evol ; 2(11): 1761-1771, 2018 11.
Article in English | MEDLINE | ID: mdl-30297745

ABSTRACT

Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.


Subject(s)
Biological Evolution , Genome , Sharks/genetics , Animals , Elasmobranchii/genetics , Vertebrates/genetics
4.
Dev Dyn ; 247(5): 712-723, 2018 05.
Article in English | MEDLINE | ID: mdl-29396887

ABSTRACT

BACKGROUND: Studying cartilaginous fishes (chondrichthyans) has helped us understand vertebrate evolution and diversity. However, resources such as genome sequences, embryos, and detailed staging tables are limited for species within this clade. To overcome these limitations, we have focused on a species, the brownbanded bamboo shark (Chiloscyllium punctatum), which is a relatively common aquarium species that lays eggs continuously throughout the year. In addition, because of its relatively small genome size, this species is promising for molecular studies. RESULTS: To enhance biological studies of cartilaginous fishes, we establish a normal staging table for the embryonic development of the brownbanded bamboo shark. Bamboo shark embryos take around 118 days to reach the hatching period at 25°C, which is approximately 1.5 times as fast as the small-spotted catshark (Scyliorhinus canicula) takes. Our staging table divides the embryonic period into 38 stages. Furthermore, we found culture conditions that allow early embryos to grow in partially opened egg cases. CONCLUSIONS: In addition to the embryonic staging table, we show that bamboo shark embryos exhibit relatively fast embryonic growth and are amenable to culture, key characteristics that enhance their experimental utility. Therefore, the present study is a foundation for cartilaginous fish research. Developmental Dynamics 247:712-723, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Embryonic Development/physiology , Sharks/embryology , Animals , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...