Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 326(6): H1337-H1349, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38551482

ABSTRACT

Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and ß-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in ß-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished ß-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.


Subject(s)
Action Potentials , Heart Rate , Heart , Nicotine , Sympathetic Nervous System , Animals , Nicotine/toxicity , Nicotine/adverse effects , Rabbits , Heart Rate/drug effects , Action Potentials/drug effects , Heart/innervation , Heart/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Male , Nicotinic Agonists/toxicity , Nicotinic Agonists/administration & dosage , Calcium Signaling/drug effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/metabolism , Transdermal Patch , Isolated Heart Preparation , Administration, Cutaneous , Norepinephrine/metabolism
2.
bioRxiv ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38045290

ABSTRACT

Nicotine is the primary addictive component in tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. However, the underlying mechanisms are unclear. To address this, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days prior to performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca 2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the 1 st - 3 rd thoracic vertebrae, and ß-adrenergic responsiveness was additionally evaluated as changes in heart rate (HR) following norepinephrine (NE) perfusion. Baseline ex vivo HR and SNS stimulation threshold were increased in NIC vs. CT ( P = 0.004 and P = 0.003 respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC vs. CT at baseline ( P = 0.002) and during SNS ( P = 0.0003), with similar results obtained for Ca 2+ transient alternans. SNS reduced the PCL at which alternans emerged in CT but not NIC hearts. NIC exposed hearts also tended to have slower and reduced HR responses to NE perfusion. While fibrosis was unaltered, NIC hearts had lower sympathetic nerve density ( P = 0.03) but no difference in NE content vs. CT. These results suggest both sympathetic hypo-innervation of the myocardium and diminished ß-adrenergic responsiveness with NIC. This autonomic remodeling may underlie the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with continued long-term usage. NEW & NOTEWORTHY: Here we show that chronic nicotine exposure was associated with increased heart rate, lower threshold for alternans and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to the sympathetic hypo-innervation of the myocardium and diminished ß- adrenergic responsiveness observed following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this pro-arrhythmic remodeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...