Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 34(5): e2982, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831569

ABSTRACT

Spatially explicit prioritization of invasive species control is a complex issue, requiring consideration of trade-offs between immediate and future benefits. This study aimed to prioritize management efforts to account for current and future threats from widespread invasions and examine the strength of the trade-off between these different management goals. As a case study, we identified spatially explicit management priorities for the widespread invasion of introduced willow into riparian and wetland habitats across a 102,145-km2 region in eastern Australia. In addition to targeting places where willow threatens biodiversity now, a second set of management goals was to limit reinfestation and further spread that could occur via two different mechanisms (downstream and by wind). A model of likely willow distribution across the region was combined with spatial data for biodiversity (native vegetation, threatened species and communities), ecological conditions, management costs, and two potential dispersal layers. We used systematic conservation planning software (Zonation) to prioritize where willow management should be focussed across more than 100,000 catchments for a range of different scenarios that reflected different weights between management goals. For willow invasion, we found that we could prioritize willow management to reduce the future threat of dispersal downstream with little reduction in the protection of biodiversity. However, accounting for future threats from wind dispersal resulted in a stronger trade-off with protection of threatened biodiversity. The strongest trade-off was observed when both dispersal mechanisms were considered together. This study shows that considering current and future goals together offers the potential to substantially improve conservation outcomes for invasive species management. Our approach also informs land managers about the relative trade-offs among different management goals under different control scenarios, helping to make management decisions more transparent. This approach can be used for other widespread invasive species to help improve invasive species management decisions.


Subject(s)
Conservation of Natural Resources , Introduced Species , Conservation of Natural Resources/methods , Models, Biological , Salix , Biodiversity
2.
Ecol Evol ; 13(4): e9905, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038530

ABSTRACT

Quantifying habitat quality is dependent on measuring a site's relative contribution to population growth rate. This is challenging for studies of waterbirds, whose high mobility can decouple demographic rates from local habitat conditions and make sustained monitoring of individuals near-impossible. To overcome these challenges, biologists have used many direct and indirect proxies of waterbird habitat quality. However, consensus on what methods are most appropriate for a given scenario is lacking. We undertook a structured literature review of the methods used to quantify waterbird habitat quality, and provide a synthesis of the context-dependent strengths and limitations of those methods. Our search of the Web of Science and Scopus databases returned a sample of 666 studies, upon which our review was based. The reviewed studies assessed habitat quality by either measuring habitat attributes (e.g., food abundance, water quality, vegetation structure), or measuring attributes of the waterbirds themselves (e.g., demographic parameters, body condition, behavior, distribution). Measuring habitat attributes, although they are only indirectly related to demographic rates, has the advantage of being unaffected by waterbird behavioral stochasticity. Conversely, waterbird-derived measures (e.g., body condition, peck rates) may be more directly related to demographic rates than habitat variables, but may be subject to greater stochastic variation (e.g., behavioral change due to presence of conspecifics). Therefore, caution is needed to ensure that the measured variable does influence waterbird demographic rates. This assumption was usually based on ecological theory rather than empirical evidence. Our review highlighted that there is no single best, universally applicable method to quantify waterbird habitat quality. Individual project specifics (e.g., time frame, spatial scale, funding) will influence the choice of variables measured. Where possible, practitioners should measure variables most directly related to demographic rates. Generally, measuring multiple variables yields a better chance of accurately capturing the relationship between habitat characteristics and demographic rates.

3.
Am Nat ; 198(4): 540-550, 2021 10.
Article in English | MEDLINE | ID: mdl-34559614

ABSTRACT

AbstractOn isolated islands, large arthropods can play an important functional role in ecosystem dynamics. On the Norfolk Islands group, South Pacific, we monitored the diet and foraging activity of an endemic chilopod, the Phillip Island centipede (Cormocephalus coynei), and used a stable isotope mixing model to estimate dietary proportions. Phillip Island centipede diet is represented by vertebrate animals (48%) and invertebrates (52%), with 30.5% consisting of squamates, including the Lord Howe Island skink (Oligosoma lichenigera) and Günther's island gecko (Christinus guentheri); 7.9% consisting of black-winged petrel (Pterodroma nigripennis) nestlings; and 9.6% consisting of marine fishes scavenged from regurgitated seabird meals. Centipede predation was the principal source of petrel nestling mortality, with annual rates of predation varying between 11.1% and 19.6% of nestlings. This means that 2,109-3,724 black-winged petrel nestlings may be predated by centipedes annually. Petrels produce a single offspring per year; therefore, predation of nestlings by centipedes represents total breeding failure for a pair in a given year. Our work demonstrates that arthropods can play a leading role in influencing vertebrate reproductive output and modifying trophic structures and nutrient flow in island ecosystems.


Subject(s)
Arthropods , Ecosystem , Animals , Birds , Diet , Predatory Behavior
4.
Mar Pollut Bull ; 119(1): 204-210, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28377135

ABSTRACT

Migration and dispersal can expose wildlife to threats in different parts of their range, particularly for localized anthropogenic threats. Wildlife exposure to metal contaminants may correlate with local anthropogenic emissions. Feather mercury concentrations of adult and juvenile Lesser Frigatebirds (Fregata ariel) and Great Frigatebirds (F. minor) were determined for individuals breeding in the eastern Indian Ocean. Low mercury concentration in juveniles relative to adults, higher mercury concentration in adult females than adult males, and a trend for Lesser Frigatebirds to have higher mercury concentration than Great Frigatebirds implicate non-breeding ground exposure as the major influence on mercury burden. Aspects of foraging ecology are congruent with high exposure occurring in inshore waters of the non-breeding range, particularly in the South China Sea. These findings highlight the need for tighter mercury emission regulations in southeast Asia to minimise the potential threat to frigatebirds and other species dependent on marine resources including humans.


Subject(s)
Birds , Environmental Pollutants , Mercury , Reproduction , Animals , China , Environmental Exposure , Feeding Behavior , Female , Indian Ocean , Male
5.
Ecol Evol ; 6(23): 8583-8594, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28031809

ABSTRACT

Conspecific individuals inhabiting nearby breeding colonies are expected to compete strongly for food resources owing to the constraints imposed by shared morphology, physiology, and behavior on foraging strategy. Consequently, colony-specific foraging patterns that effectively partition the available resources may be displayed. This study aimed to determine whether intraspecific resource partitioning occurs in two nearby colonies of Lesser Frigatebirds (Fregata ariel). A combination of stable isotope analysis and GPS tracking was used to assess dietary and spatial partitioning of foraging resources during the 2013 and 2014 breeding seasons. These results were compared to vessel-derived estimates of prey availability, local primary productivity, and estimates of reproductive output to suggest potential drivers and implications of any observed partitioning. Isotopic data indicated a more neritic source of provisioned resources for near-fledged chicks at an inshore colony, whereas their offshore counterparts were provisioned with resources with a more pelagic signal. Deep pelagic waters (>200 m) had higher availability of a preferred prey type despite a trend for lower primary productivity. Differences in foraging ecology between the two populations may have contributed to markedly different reproductive outputs. These findings suggest environmental context influences dietary and spatial aspects of foraging ecology. Furthermore, the effect of colony-specific foraging patterns on population demography warrants further research.

6.
Sci Rep ; 6: 22574, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26986721

ABSTRACT

Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.


Subject(s)
Birds/physiology , Environmental Monitoring/instrumentation , Remote Sensing Technology/instrumentation , Aircraft , Animals , Animals, Wild/physiology , Environmental Monitoring/methods , Nesting Behavior , Remote Sensing Technology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...