Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 236: 124352, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31325825

ABSTRACT

Effective oil spill preparedness and response are crucial to ensure environmental protection and promote the responsible development of the petroleum industry. Hence, interest in developing new approaches and/or improving existing oil spill response measures has increased greatly in the past decade. Solidifiers are an attractive and underutilized option to mitigate the effects of oil spills, as they interact with oil to contain the spill, prevent it from spreading, and facilitate its removal from the environment. In this work, we have synthesized an inexpensive and easy-to-make natural-based sorbent, a subclass of solidifiers. Our amylopectin-graft-poly(methyl acrylate) (AP-g-PMA) sorbent is highly oleophilic and hydrophobic, and selectively solidifies diluted bitumen and conventional crude oil from biphasic mixtures of oil and water. The complete solidification of conventional crude oil and diluted bitumen by the AP-g-PMA sorbent occurs within 8 and 32 min, respectively, and even a low solidifier-to-oil ratio of 4% w/w is sufficient to enable complete recovery of diluted bitumen. This innovative natural-based polymeric sorbent may be applied as a key component of oil spill response procedures, especially for heavy oils. The AP-g-PMA sorbent combines the biodegradability and non-toxicity of the amylopectin with the hydrophobicity and oleophilicity of the synthetic polymer poly(methyl acrylate).


Subject(s)
Acrylates/chemistry , Amylopectin/chemistry , Biodegradation, Environmental , Petroleum Pollution/analysis , Petroleum/analysis , Hydrophobic and Hydrophilic Interactions , Oceans and Seas , Oil and Gas Fields , Polymers/chemistry
2.
Mater Sci Eng C Mater Biol Appl ; 62: 967-74, 2016 May.
Article in English | MEDLINE | ID: mdl-26952503

ABSTRACT

Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach.


Subject(s)
Antioxidants/chemistry , Humic Substances/analysis , Antioxidants/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Humans , Reactive Oxygen Species/metabolism , Virus Replication/drug effects
3.
Appl Biochem Biotechnol ; 170(6): 1491-502, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23690173

ABSTRACT

Hyaluronic acid (HA) is a biopolymer with important applications in the pharmaceutical, medical, and cosmetic fields. This work explores the potentialities of a cylindrical polyurethane foam dowel with central aeration as a novel packed bed bioreactor for the production of HA. The goals were to provide a large surface area for oxygen transfer through the patches of liquid film that form in the pores of the foam in which cell proliferation and HA production occur and to easily recover the HA produced. The resulting yields of HA/cell were higher than 1, and the produced HA was completely recovered by pressing the foam. The external conditions that inhibit catabolism, the deviation of energetic metabolism toward the production of HA, were modulated by aeration and the initial glucose concentration. The production of HA was reproducible in 12 successive fermentation cycles. These findings contribute to the development of efficient strategies for the controlled production and recovery of HA.


Subject(s)
Batch Cell Culture Techniques/methods , Bioreactors/microbiology , Hyaluronic Acid/biosynthesis , Polyurethanes/chemistry , Streptococcus equi/metabolism , Gases/chemistry , Hyaluronic Acid/isolation & purification , Streptococcus equi/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...