Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
HardwareX ; 15: e00445, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37795342

ABSTRACT

Proprietary bottle rolling systems automate some laboratory applications, however, their high costs limit accessibility. This study provides designs of an open source bottle roller that is compatible with distributed digital manufacturing using 3-D printed parts and readily-available commercial components. The experimental results show that the open source bottle roller can be fabricated for CAD$210 (about USD$150) in materials, which is 86% less expensive than the most affordable proprietary bottle roller on the market. The design, however, is more robust with enhanced capabilities. The design can be adapted to the user's needs, but is already compatible with incubators with a low profile (dimensions 50 cm x46 cm x8.8 cm) and capable of being operated at elevated temperatures. The systems can be adjusted to revolves from 1 to 200 RPM, exceeding the rotational speed of most commercial systems. The open source bottle roller as tested has a capacity greater than 1.2 kg and can roll twelve 100 mL bottles simultaneously. Validation testing showed that it can operate for days at 80 RPM without human intervention or monitoring for days at both room temperature and elevated temperatures (50 °C). Future work includes adapting the designs for different sizes and for different fabrication techniques to further reduce costs and increase flexibility.

2.
HardwareX ; 14: e00423, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37188059

ABSTRACT

Ball milling is used for comminution by rotating a drum to grind materials using balls with specific diameters. Ball milling advantages include the potential for high capacity, predicted fineness in a specific amount of time, reliability, safety, and simplicity, but has disadvantages of high weight, energy consumption and costs, which limit accessibility. To overcome these limitations this study applies the free and open source hardware approach coupled to distributed digital manufacturing to fabricate a ball mill with a simple, customizable design that can be used in a wide range of scientific applications and circumstances including those without access to reliable grid electricity. The highly-customizable design reduces the cost to

3.
Adv Biomed Res ; 10: 37, 2021.
Article in English | MEDLINE | ID: mdl-35071105

ABSTRACT

BACKGROUND: The diagnosis of pulmonary embolism (PE) because of nonspecific clinical presentation remains as a challenge for emergency physicians. Arterial to end-tidal partial pressure of carbon dioxide (P(a-Et) CO2) gradient may be useful in the evaluation of PE. This aimed to define the diagnostic role of P(a-Et)CO2 gradient by sidestream capnography, as a noninvasive method, and D-dimer in patients with PE. MATERIALS AND METHODS: Two hundred and three patients with chest pain or dyspnea who attend the hospital emergency ward were enrolled over a study period at a single academic center. PE was confirmed by multidetector computed tomography (MDCT) scans. PaCO2, EtCO2, and D-dimer were measured within 24 h of MDCT by capnograph. RESULTS: The combination of P(a-Et)CO2 gradient (cutoff >9.2 ng/ml) and D-dimer (cutoff >3011 ng/ml) with sensitivity and specificity of 30.2% and 87.2% showed a significant diagnostic value in detecting PE (area under the curve = 0.577, P = 0.045) but not alone (P > 0.05). CONCLUSION: As the results show, the combination of P(a-Et)CO2 gradient and D-dimer can show an acceptable diagnostic value in detecting PE, although it suggests further research on evaluating the diagnostic value of P(a-Et)CO2 gradient and combining it with other diagnostic criteria to achieve a definite and generalizable result.

SELECTION OF CITATIONS
SEARCH DETAIL
...