Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 85(3): 435-444, 2017 03.
Article in English | MEDLINE | ID: mdl-27936493

ABSTRACT

The heavily used protein-protein docking server ClusPro performs three computational steps as follows: (1) rigid body docking, (2) RMSD based clustering of the 1000 lowest energy structures, and (3) the removal of steric clashes by energy minimization. In response to challenges encountered in recent CAPRI targets, we added three new options to ClusPro. These are (1) accounting for small angle X-ray scattering data in docking; (2) considering pairwise interaction data as restraints; and (3) enabling discrimination between biological and crystallographic dimers. In addition, we have developed an extremely fast docking algorithm based on 5D rotational manifold FFT, and an algorithm for docking flexible peptides that include known sequence motifs. We feel that these developments will further improve the utility of ClusPro. However, CAPRI emphasized several shortcomings of the current server, including the problem of selecting the right energy parameters among the five options provided, and the problem of selecting the best models among the 10 generated for each parameter set. In addition, results convinced us that further development is needed for docking homology models. Finally, we discuss the difficulties we have encountered when attempting to develop a refinement algorithm that would be computationally efficient enough for inclusion in a heavily used server. Proteins 2017; 85:435-444. © 2016 Wiley Periodicals, Inc.


Subject(s)
Algorithms , Computational Biology/methods , Molecular Docking Simulation/methods , Proteins/chemistry , Software , Water/chemistry , Benchmarking , Binding Sites , Cluster Analysis , Crystallography, X-Ray , Databases, Protein , Internet , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Research Design , Structural Homology, Protein , Thermodynamics
2.
Proc Natl Acad Sci U S A ; 113(30): E4286-93, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27412858

ABSTRACT

Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein-protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold [Formula: see text], where [Formula: see text] is the rotation group representing the space of the rotating ligand, and [Formula: see text] is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for [Formula: see text] Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring.


Subject(s)
Algorithms , Fourier Analysis , Molecular Docking Simulation/methods , Protein Conformation , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Protein Binding , Proteins/metabolism , Reproducibility of Results , Rotation , Thermodynamics
3.
Nat Protoc ; 10(5): 733-55, 2015 May.
Article in English | MEDLINE | ID: mdl-25855957

ABSTRACT

FTMap is a computational mapping server that identifies binding hot spots of macromolecules-i.e., regions of the surface with major contributions to the ligand-binding free energy. To use FTMap, users submit a protein, DNA or RNA structure in PDB (Protein Data Bank) format. FTMap samples billions of positions of small organic molecules used as probes, and it scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots in good agreement with experimental data. FTMap serves as the basis for other servers, namely FTSite, which is used to predict ligand-binding sites, FTFlex, which is used to account for side chain flexibility, FTMap/param, used to parameterize additional probes and FTDyn, for mapping ensembles of protein structures. Applications include determining the druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures and providing input for fragment-based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and it is much faster than the more-recent approaches to protein mapping based on mixed molecular dynamics. By using 16 probe molecules, the FTMap server finds the hot spots of an average-size protein in <1 h. As FTFlex performs mapping for all low-energy conformers of side chains in the binding site, its completion time is proportionately longer.


Subject(s)
Computational Biology/methods , Proteins/chemistry , Proteins/metabolism , Binding Sites , Databases, Protein , Internet , Ligands , Molecular Probes , Protein Conformation
4.
J Chem Inf Model ; 54(7): 2068-78, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24974889

ABSTRACT

Many proteins of widely differing functionality and structure are capable of binding heparin and heparan sulfate. Since crystallizing protein-heparin complexes for structure determination is generally difficult, computational docking can be a useful approach for understanding specific interactions. Previous studies used programs originally developed for docking small molecules to well-defined pockets, rather than for docking polysaccharides to highly charged shallow crevices that usually bind heparin. We have extended the program PIPER and the automated protein-protein docking server ClusPro to heparin docking. Using a molecular mechanics energy function for scoring and the fast Fourier transform correlation approach, the method generates and evaluates close to a billion poses of a heparin tetrasaccharide probe. The docked structures are clustered using pairwise root-mean-square deviations as the distance measure. It was shown that clustering of heparin molecules close to each other but having different orientations and selecting the clusters with the highest protein-ligand contacts reliably predicts the heparin binding site. In addition, the centers of the five most populated clusters include structures close to the native orientation of the heparin. These structures can provide starting points for further refinement by methods that account for flexibility such as molecular dynamics. The heparin docking method is available as an advanced option of the ClusPro server at http://cluspro.bu.edu/ .


Subject(s)
Heparin/metabolism , Molecular Docking Simulation , Proteins/chemistry , Proteins/metabolism , Binding Sites , Heparitin Sulfate/metabolism , Humans , Monte Carlo Method , Protein Conformation , Solvents/chemistry
5.
Proteins ; 81(12): 2159-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23996272

ABSTRACT

The protein docking server ClusPro has been participating in critical assessment of prediction of interactions (CAPRI) since its introduction in 2004. This article evaluates the performance of ClusPro 2.0 for targets 46-58 in Rounds 22-27 of CAPRI. The analysis leads to a number of important observations. First, ClusPro reliably yields acceptable or medium accuracy models for targets of moderate difficulty that have also been successfully predicted by other groups, and fails only for targets that have few acceptable models submitted. Second, the quality of automated docking by ClusPro is very close to that of the best human predictor groups, including our own submissions. This is very important, because servers have to submit results within 48 h and the predictions should be reproducible, whereas human predictors have several weeks and can use any type of information. Third, while we refined the ClusPro results for manual submission by running computationally costly Monte Carlo minimization simulations, we observed significant improvement in accuracy only for two of the six complexes correctly predicted by ClusPro. Fourth, new developments, not seen in previous rounds of CAPRI, are that the top ranked model provided by ClusPro was acceptable or better quality for all these six targets, and that the top ranked model was also the highest quality for five of the six, confirming that ranking models based on cluster size can reliably identify the best near-native conformations.


Subject(s)
Molecular Docking Simulation , Protein Interaction Mapping , Proteins/chemistry , Software , Computational Biology , Computer Simulation , Databases, Protein , Humans , Internet , Models, Molecular , Monte Carlo Method , Protein Conformation , Proteomics
6.
Nucleic Acids Res ; 40(Web Server issue): W271-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22589414

ABSTRACT

Binding hot spots, protein sites with high-binding affinity, can be identified using X-ray crystallography or NMR by screening libraries of small organic molecules that tend to cluster at such regions. FTMAP, a direct computational analog of the experimental screening approaches, globally samples the surface of a target protein using small organic molecules as probes, finds favorable positions, clusters the conformations and ranks the clusters on the basis of the average energy. The regions that bind several probe clusters predict the binding hot spots, in good agreement with experimental results. Small molecules discovered by fragment-based approaches to drug design also bind at the hot spot regions. To identify such molecules and their most likely bound positions, we extend the functionality of FTMAP (http://ftmap.bu.edu/param) to accept any small molecule as an additional probe. In its updated form, FTMAP identifies the hot spots based on a standard set of probes, and for each additional probe shows representative structures of nearby low energy clusters. This approach helps to predict bound poses of the user-selected molecules, detects if a compound is not likely to bind in the hot spot region, and provides input for the design of larger ligands.


Subject(s)
Proteins/chemistry , Software , Algorithms , Binding Sites , Internet , Ligands , Molecular Probes/chemistry , Protein Binding , Thrombin/chemistry
7.
Biochem Mol Biol Educ ; 38(6): 419-22, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21567873

ABSTRACT

The aim of the Structural Biology Extensible Visualization Scripting Language (SBEVSL) project is to allow users who are experts in one scripting language to use that language in a second molecular visualization environment without requiring the user to learn a new scripting language. ConSCRIPT, the first SBEVSL release, is a plug-in for PyMOL that accepts RasMol scripting commands either as premade scripts or as line-by-line entries from PyMOL's own command line. The plug-in is available for download at http://sourceforge.net/projects/sbevsl/files in the ConSCRIPT folder. Biochemistry and Molecular Biology Education Vol. 38, No. 6, pp. 419-422, 2010.

SELECTION OF CITATIONS
SEARCH DETAIL
...