Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202405040, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785103

ABSTRACT

Nucleoside and nucleotide analogues have proven to be transformative in the treatment of viral infections and cancer. One branch of structural modification to deliver new nucleoside analogue classes explores replacement of canonical ribose oxygen with a sulfur atom. Whilst biological activity of such analogues has been shown in some cases, widespread exploration of this compound class is hitherto hampered by the lack of a straightforward and universal nucleobase diversification strategy. Herein, we present a synergistic platform enabling both biocatalytic nucleobase diversification from 4'-thiouridine in a one-pot process, and chemical functionalization to access new entities. This methodology delivers entry across pyrimidine and purine 4'-thionucleosides, paving a way for wider synthetic and biological exploration. We exemplify our approach by enzymatic synthesis of 5-iodo-4'-thiouridine on multi-milligram scale and from here switch to complete chemical synthesis of a novel nucleoside analogue probe, 5-ethynyl-4'-thiouridine. Finally, we demonstrate the utility of this probe to monitor RNA synthesis in proliferating HeLa cells, validating its capability as a new metabolic RNA labelling tool.

2.
Nat Prod Rep ; 41(6): 873-884, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38197414

ABSTRACT

Covering: 2019 to 2023Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.


Subject(s)
Anti-Bacterial Agents , Purine Nucleosides , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Purine Nucleosides/chemistry , Purine Nucleosides/chemical synthesis , Purine Nucleosides/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/chemical synthesis , Molecular Structure , Humans
3.
Angew Chem Int Ed Engl ; 61(24): e202116142, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35218274

ABSTRACT

(Pre-)anthraquinones are widely distributed natural compounds and occur in plants, fungi, microorganisms, and animals, with atrochrysone (1) as the key biosynthetic precursor. Chemical analyses established mushrooms of the genus Cortinarius-the webcaps-as producers of atrochrysone-derived octaketide pigments. However, more recent genomic data did not provide any evidence for known atrochrysone carboxylic acid (4) synthases nor any other polyketide synthase (PKS) producing oligocyclic metabolites. Here, we describe an unprecedented class of non-reducing (NR-)PKS. In vitro assays with recombinant enzyme in combination with in vivo product formation in the heterologous host Aspergillus niger established CoPKS1 and CoPKS4 of C. odorifer as members of a new class of atrochrysone carboxylic acid synthases. CoPKS4 catalyzed both hepta- and octaketide synthesis and yielded 6-hydroxymusizin (6), along with 4. These first mushroom PKSs for oligocyclic products illustrate how the biosynthesis of bioactive natural metabolites evolved independently in various groups of life.


Subject(s)
Agaricales , Polyketides , Agaricales/metabolism , Anthraquinones/chemistry , Polyketide Synthases/metabolism , Polyketides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...