Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Electr Eng ; 105: 108479, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36406625

ABSTRACT

Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.

2.
Artif Intell Med ; 134: 102431, 2022 12.
Article in English | MEDLINE | ID: mdl-36462891

ABSTRACT

During the COVID-19 pandemic, the patient care delivery paradigm rapidly shifted to remote technological solutions. Rising rates of life expectancy of older people, and deaths due to chronic diseases (CDs) such as cancer, diabetes and respiratory disease pose many challenges to healthcare. While the feasibility of Remote Patient Monitoring (RPM) with a Smart Healthcare Monitoring (SHM) framework was somewhat questionable before the COVID-19 pandemic, it is now a proven commodity and is on its way to becoming ubiquitous. More health organizations are adopting RPM to enable CD management in the absence of individual monitoring. The current studies on SHM have reviewed the applications of IoT and/or Machine Learning (ML) in the domain, their architecture, security, privacy and other network related issues. However, no study has analyzed the AI and ubiquitous computing advances in SHM frameworks. The objective of this research is to identify and map key technical concepts in the SHM framework. In this context an interesting and meaningful classification of the research articles surveyed for this work is presented. The comprehensive and systematic review is based on the "Preferred Reporting Items for Systematic Review and Meta-Analysis" (PRISMA) approach. A total of 2540 papers were screened from leading research archives from 2016 to March 2021, and finally, 50 articles were selected for review. The major advantages, developments, distinctive architectural structure, components, technical challenges and possibilities in SHM are briefly discussed. A review of various recent cloud and fog computing based architectures, major ML implementation challenges, prospects and future trends is also presented. The survey primarily encourages the data driven predictive analytics aspects of healthcare and the development of ML models for health empowerment.


Subject(s)
COVID-19 , Aged , Humans , COVID-19/epidemiology , Delivery of Health Care , Machine Learning , Pandemics
3.
Front Public Health ; 9: 797877, 2021.
Article in English | MEDLINE | ID: mdl-35242738

ABSTRACT

Diabetes has been recognized as a global medical problem for more than half a century. Patients with diabetes can benefit from the Internet of Things (IoT) devices such as continuous glucose monitoring (CGM), intelligent pens, and similar devices. Smart devices generate continuous data streams that must be processed in real-time to benefit the users. The amount of medical data collected is vast and heterogeneous since it is gathered from various sources. An accurate diagnosis can be achieved through a variety of scientific and medical techniques. It is necessary to process this streaming data faster to obtain relevant and significant knowledge. Recently, the research has concentrated on improving the prediction model's performance by using ensemble-based and Deep Learning (DL) approaches. However, the performance of the DL model can degrade due to overfitting. This paper proposes the Extra-Tree Ensemble feature selection technique to reduce the input feature space with DL (ETEODL), a predictive framework to predict the likelihood of diabetes. In the proposed work, dropout layers follow the hidden layers of the DL model to prevent overfitting. This research utilized a dataset from the UCI Machine learning (ML) repository for an Early-stage prediction of diabetes. The proposed scheme results have been compared with state-of-the-art ML algorithms, and the comparison validates the effectiveness of the predictive framework. This proposed work, which outperforms the other selected classifiers, achieves a 97.38 per cent accuracy rate. F1-Score, precision, and recall percent are 96, 97.7, and 97.7, respectively. The comparison unveils the superiority of the suggested approach. Thus, the proposed method effectively improves the performance against the earlier ML techniques and recent DL approaches and avoids overfitting.


Subject(s)
Blood Glucose Self-Monitoring , Diabetes Mellitus , Algorithms , Blood Glucose , Diabetes Mellitus/diagnosis , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...