Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biophys Chem ; 294: 106963, 2023 03.
Article in English | MEDLINE | ID: mdl-36716683

ABSTRACT

ßL-crystallin aggregation due to oxidative damage in the presence of H2O2 and ferric chloride was studied in-vitro under conditions close to physiological. It was shown that the protein aggregation characterized by the nucleation time and the aggregation rate significantly depended on the composition of the isoosmotic buffers used, and decreased in the series HEPES buffer > Tris buffer > PBS. Ferric chloride at neutral pH was converted into water-insoluble iron hydroxide III (≡FeIIIOH). According to the data of scanning electron microscopy the ≡FeIIIOH particles formed in HEPES buffer, Tris buffer, and PBS practically did not differ in structure. However, the sizes of ≡FeIIIOH floating particles measured by dynamic light scattering differed significantly and were 44 ± 28 nm, 93 ± 66 nm, 433 ± 316 nm (Zaver ± SD) for HEPES buffer, Tris buffer, and PBS, respectively. It was found by the spin trap method that the ability of ≡FeIIIOH to decompose H2O2 with the formation of a •OH decreases in the series HEPES buffer, Tris buffer, and PBS. The authors suggest that the ability to generate •OH during the decomposition of H2O2 is determined by the total surface area of ≡FeIIIOH particles, which significantly depends on the composition of the buffer in which these particles are formed.


Subject(s)
Crystallins , Iron Compounds , HEPES/chemistry , Tromethamine , Hydrogen Peroxide , Oxidative Stress , Buffers , Oxidation-Reduction
2.
Pharmaceutics ; 14(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36559265

ABSTRACT

Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 µg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.

3.
Membranes (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36295671

ABSTRACT

Anthraquinone-2,7-disulfonic acid (2,7-AQDS) is a promising organic compound, which is considered as a negolyte for redox flow batteries as well as for other applications. In this work we carried out a well-known reaction of anthraquinone sulfonation to synthesize 2,7-AQDS in mixture with other sulfo-derivatives, namely 2,6-AQDS and 2-AQS. Redox behavior of this mixture was evaluated with cyclic voltammetry and was almost identical to 2,7-AQDS. Mixture was then assessed as a potential negolyte of anthraquinone-bromine redox flow battery. After adjusting membrane-electrode assembly composition (membrane material and flow field)), the cell demonstrated peak power density of 335 mW cm-2 (at SOC 90%) and capacity utilization, capacity retention and energy efficiency of 87.9, 99.6 and 64.2%, respectively. These values are almost identical or even higher than similar values for flow battery with 2,7-AQDS as a negolyte, while the price of mixture is significantly lower. Therefore, this work unveils the promising possibility of using a mixture of crude sulfonated anthraquinone derivatives mixture as an inexpensive negolyte of RFB.

4.
Polymers (Basel) ; 14(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566896

ABSTRACT

Co-delivery of chemotherapeutics in cancer treatment has been proven essential for overcoming multidrug resistance and improving the outcome of therapy. We report the synthesis of amphiphilic copolymers of N-vinyl-2-pyrrolidone and allyl glycidyl ether of various compositions and demonstrate that they can form nanoaggregates capable of simultaneous covalent immobilization of doxorubicin by the epoxy groups in the shell and hydrophobic-driven incorporation of paclitaxel into the core of nanoparticles. The structure of the obtained copolymers was characterized by 13C NMR, IR, and MALDI spectroscopy, as well as adsorption at the water/toluene interface. A linear increase in the number-average molecular weight of amphiphilic copolymers and a decrease in the number-average diameter of macromolecular aggregates with an increase in the ratio N-vinyl-2-pyrrolidone/allyl glycidyl ether were observed. The assembled nanocarriers were characterized by DLS. The reported novel nanocarriers can be of interest for delivery and co-delivery of a wide range of pharmacological preparations and combined therapy for cancer and other deceases.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34835771

ABSTRACT

For the first time, a specific time-delayed peak was registered in the femtosecond transient absorption (TA) spectra of ZnxCd1-xS/ZnS (x~0.5) alloy quantum dots (QDs) doped with Mn2+, which was interpreted as the electrochromic Stark shift of the band-edge exciton. The time-delayed rise and decay kinetics of the Stark peak in the manganese-doped QDs significantly distinguish it from the kinetics of the Stark peak caused by exciton-exciton interaction in the undoped QDs. The Stark shift in the Mn2+-doped QDs developed at a 1 ps time delay in contrast to the instantaneous appearance of the Stark shift in the undoped QDs. Simultaneously with the development of the Stark peak in the Mn2+-doped QDs, stimulated emission corresponding to 4T1-6A1 Mn2+ transition was detected in the subpicosecond time domain. The time-delayed Stark peak in the Mn2+-doped QDs, associated with the development of an electric field in QDs, indicates the appearance of charge transfer intermediates in the process of exciton quenching by manganese ions, leading to the ultrafast Mn2+ excitation. The usually considered mechanism of the nonradiative energy transfer from an exciton to Mn2+ does not imply the development of an electric field in a QD. Femtosecond TA data were analyzed using a combination of empirical and computational methods. A kinetic scheme of charge transfer processes is proposed to explain the excitation of Mn2+. The kinetic scheme includes the reduction of Mn2+ by a 1Se electron and the subsequent oxidation of Mn1+ with a hole, leading to the formation of an excited state of manganese.

6.
Ultrason Sonochem ; 78: 105751, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34534797

ABSTRACT

Methods of NMR relaxation and differential scanning calorimetry (DSC) were used to study the crystallization of anhydrous milk fat (AMF) obtained from milk and subjected to ultrasonic (US) processing. Amongst the changes in the crystallization nature under the influence of ultrasound are the decrease in the crystallization temperature and the increase in the melting enthalpy of the anhydrous milk fat samples. The increase is ∼30% at 20 min of isothermal crystallization and is presumably explained by the additional formation of ß'-form crystals from the melt. The parameters of the Avrami equation applied to the description of experimental data show an increase in the crystallization rate in samples with ultrasonic treatment and a change in the dimension of crystallization with a change in melting temperature.


Subject(s)
Milk , Ultrasonics , Animals , Calorimetry, Differential Scanning , Crystallization , Goats
7.
Polymers (Basel) ; 13(15)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34372172

ABSTRACT

It was found that sulfanylethanoic and 3-sulfanylpropanoic acids are effective regulators of molecular weight with chain transfer constants of 0.441 and 0.317, respectively, and show an unexpected acceleration effect on the radical polymerization of N-vinyl-2-pyrrolidone, initiated by 2,2'-azobisisobutyronitrile. It was determined for the first time that the thiolate anions of mercapto acids form a high-temperature redox initiating system with 2,2'-azobisisobutyronitrile during the radical polymerization of N-vinyl-2-pyrrolidone in 1,4-dioxane. Considering the peculiarities of initiation, a kinetic model of the polymerization of N-vinyl-2-pyrrolidone is proposed, and it is shown that the theoretical orders of the reaction rate, with respect to the monomer, initiator, and chain transfer agent, are 1, 0.75, 0.25, and are close to their experimentally determined values. Carboxyl-containing techelics of N-vinyl-2-pyrrolidone were synthesized so that it can slow down the release of the anticancer drug, doxorubicin, from aqueous solutions, which can find its application in the pharmacological field.

8.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209367

ABSTRACT

The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol-1. Based on the proposed mechanism of oxidative polymerization of methylene blue and the data of MALDI, EPR, and IR spectroscopy methods, the structure of the polymethylene blue chain is proposed. It has been shown that polymethylene blue has a metallic luster, and its electrical conductivity is probably the result of conjugation over extended chain sections and the formation of charge transfer complexes. It was found that polymethylene blue is resistant to heating up to a temperature of 440 K and then enters into exothermic transformations without significant weight loss. When the temperature rises above 480 K, polymethylene blue is subject to endothermic degradation and retains 75% of its mass up to 1000 K.

9.
Ultrason Sonochem ; 77: 105673, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311321

ABSTRACT

The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin-lattice T1 and spin-spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12-C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.


Subject(s)
Electron Spin Resonance Spectroscopy , Goats , Magnetic Resonance Spectroscopy , Milk/chemistry , Ultrasonic Waves , Animals , Hydrophobic and Hydrophilic Interactions
11.
J Phys Chem Lett ; 11(24): 1-5, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33295771

ABSTRACT

The search for new environmental-friendly materials for energy storage is ongoing. In the presented paper, we propose polymer microgels as a new class of redox-active colloids (RACs). The microgel stable colloids are perspective low-viscosity fluids for advanced flow batteries with high volumetric energy density. In this research, we describe the procedure for the anchoring of 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) redox-active sites to the polymeric chains of water-soluble microgels based on poly(N-isopropylacrylamide)-poly(acrylic acid) interpenetrating networks. Using cyclic voltammetry and EPR spectroscopy, we show that ca. 14% of 4-amino-TEMPO groups retain electroactive properties and demonstrate the reversible redox response. It allows achieving a stable capacity of 2.5 mAh/g, enabling the low-viscous catholyte with a capacity of more than 100 mAh/L.

12.
J Phys Chem B ; 116(40): 12332-40, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22992169

ABSTRACT

Macromolecular characteristics and morphology of water-soluble complexes between sodium poly(styrene sulfonate) (PSS) and tetradecyltrimethylammonium bromide have been followed as a function of surfactant-to-polymer charge ratio (S/P) to elicit possible changes in the complexation mechanism. As revealed by light scattering, shorter PSS (30 and 150 repeat units) yield multichain complexes while longer PSS (450 and 5000 repeat units) form single-chain species throughout 0 < S/P < 0.9. Irrespective of PSS chain length, the complexes exist in solution in a swollen coil conformation and undergo a compaction with S/P but never collapse into a globule. Even when the free PSS chain is too short to coil (30 repeat units), the complexes adopt a coiled conformation due to multichain aggregation. Morphological changes (manifested by a hypochromic shift in UV spectra of the complexes at S/P < 0.5 and an increase in the local surfactant mobility observed at S/P > 0.5 by ESR) strongly suggest a change in the formation mechanism of the complexes with a transition near S/P = 0.5.


Subject(s)
Polystyrenes/chemistry , Trimethyl Ammonium Compounds/chemistry , Macromolecular Substances/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...