Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 10(9): e0137232, 2015.
Article in English | MEDLINE | ID: mdl-26353109

ABSTRACT

The immunoglobulin heavy chain (IGH) gene rearrangement in chronic lymphocytic leukemia (CLL) provides a unique molecular signature; however, we demonstrate that 26/198 CLL patients (13%) had more than one IGH rearrangement, indicating the power of molecular technology over phenotypic analysis. Single-cell PCR analysis and next-generation immuno-sequencing identified IGH-defined clones. In 23% (18/79) of cases whose clones carried unmutated immunoglobulin heavy chain variable (IGHV) genes (U-CLL), IGH rearrangements were bialleic with one productive (P) and one non-productive (NP) allele. Two U-CLL were biclonal, each clone being monoallelic (P). In 119 IGHV-mutated (M-CLL) cases, one had biallelic rearrangements in their CLL (P/NP) and five had 2-4 distinct clones. Allelic exclusion was maintained in all B-clones analyzed. Based on single-cell PCR analysis, 5/11 partner clones (45%) reached levels of >5x10(9) cells/L, suggesting second CLL clones. Partner clones persisted over years. Conventional IGH characterization and next-generation sequencing of 13 CLL, 3 multiple myeloma, 2 Waldenstrom's macroglobulinemia and 3 age-matched healthy donors consistently identified the same rearranged IGH sequences. Most multiple clones occurred in M-CLL, perhaps indicative of weak clonal dominance, thereby associating with a good prognosis. In contrast, biallelic CLL occurred primarily in U-CLL thus being associated with poor prognosis. Extending beyond intra-clonal diversity, molecular analysis of clonal evolution and apparent subclones in CLL may also reflect inter-clonal diversity.


Subject(s)
B-Lymphocytes/immunology , Gene Rearrangement, B-Lymphocyte, Heavy Chain/immunology , Immunoglobulin Heavy Chains/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Adult , Aged , Aged, 80 and over , Clone Cells/immunology , Female , Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Single-Cell Analysis
2.
PLoS One ; 8(5): e64927, 2013.
Article in English | MEDLINE | ID: mdl-23724106

ABSTRACT

Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the impact of disease evolution and treatment on clonal diversity.


Subject(s)
B-Lymphocytes/pathology , Multiple Myeloma/pathology , Amino Acid Sequence , Antigens/immunology , B-Lymphocytes/immunology , Cell Proliferation , Chromosomes, Human/genetics , Clone Cells , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , DNA Fragmentation , Disease Progression , Gene Rearrangement, B-Lymphocyte, Heavy Chain , Humans , In Situ Hybridization, Fluorescence , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Molecular Sequence Data , Multiple Myeloma/immunology , V(D)J Recombination/immunology
SELECTION OF CITATIONS
SEARCH DETAIL