Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731472

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Subject(s)
Amyloid beta-Peptides , Nanowires , Silicon , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Nanowires/chemistry , Animals , PC12 Cells , Rats , Silicon/chemistry , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
2.
Cells ; 11(22)2022 11 21.
Article in English | MEDLINE | ID: mdl-36429117

ABSTRACT

BACKGROUND: D-amino acid oxidase (DAAO) is a flavoenzyme that specifically catalyzes the deamination of many neutral and basic D-amino acids. This study aims to explore the pathological increment of hippocampal DAAO and its potential relationship with delayed hippocampal neuronal death. METHODS: Ischemia-reperfusion was induced in mice through middle cerebral artery occlusion (MCAO). Neurological deficit scores and hippocampal neuronal death were assessed in MCAO mice. Immunofluorescent staining was applied to identify activated astrocytes and evaluate DAAO expression. TUNEL and Nissl staining were utilized to identify cell apoptosis of hippocampal neurons. RESULTS: Hippocampal astrocytic DAAO was strikingly increased following ischemic stroke, with the greatest increase on day 5 after surgery, followed by the manifestation of neurobehavioral deficits. Astrocytic DAAO was found to be mainly expressed in the hippocampal CA2 region and linked with subsequent specific neural apoptosis. Thus, it is supposed that the activation of astrocytic DAAO in ischemic stroke might contribute to neuronal death. An intravenous, twice-daily administration of 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN, 10 mg/kg) markedly relieved behavioral status and delayed hippocampal neuronal death by 38.0% and 41.5%, respectively, compared to the model group treated with saline. In transfected primary astrocytes, DAAO overexpression inhibits cell activity, induces cytotoxicity, and promotes hippocampal neuronal death at least partly by enhancing H2O2 levels with subsequent activation of TRP calcium channels in neurons. CONCLUSIONS: Our findings suggest that increased hippocampal DAAO is causally associated with the development of delayed neuronal death after MCAO onset via astrocyte-neuron interactions. Hence, targeting DAAO is a promising therapeutic strategy for the management of neurological disorders.


Subject(s)
Hydrogen Peroxide , Ischemic Stroke , Mice , Animals , Hydrogen Peroxide/metabolism , Cell Death/physiology , Hippocampus/metabolism , Infarction, Middle Cerebral Artery/metabolism
3.
Psychopharmacology (Berl) ; 239(11): 3579-3593, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36221038

ABSTRACT

RATIONALE: Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES: The research aimed to investigate if and how RB could prevent ß-amyloid (Aß) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS: RB was tested in vitro (0.3-1 µM) and prevented Aß oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aß oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3ß (GSK3ß) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3ß and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS: RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3ß and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Rats , Mice , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Cyclin-Dependent Kinase 5/metabolism , tau Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rose Bengal/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Phosphorylation , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/therapeutic use
4.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015166

ABSTRACT

Ischemic stroke leads to hypoxia-induced neuronal death and behavioral abnormity, and is a major cause of death in the modern society. However, the treatments of this disease are limited. Brilliant Blue FCF (BBF) is an edible pigment used in the food industry that with multiple aromatic rings and sulfonic acid groups in its structure. BBF and its derivatives were proved to cross the blood-brain barrier and have advantages on the therapy of neuropsychiatric diseases. In this study, BBF, but not its derivatives, significantly ameliorated chemical hypoxia-induced cell death in HT22 hippocampal neuronal cell line. Moreover, protective effects of BBF were attributed to the inhibition of the extracellular regulated protein kinase (ERK) and glycogen synthase kinase-3ß (GSK3ß) pathways as evidenced by Western blotting analysis and specific inhibitors. Furthermore, BBF significantly reduced neurological and behavioral abnormity, and decreased brain infarct volume and cerebral edema induced by middle cerebral artery occlusion/reperfusion (MCAO) in rats. MCAO-induced increase of p-ERK in ischemic penumbra was reduced by BBF in rats. These results suggested that BBF prevented chemical hypoxia-induced otoxicity and MCAO-induced behavioral abnormity via the inhibition of the ERK and GSK3ß pathways, indicating the potential use of BBF for treating ischemic stroke.

5.
ACS Chem Neurosci ; 13(5): 638-647, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35148068

ABSTRACT

Abnormal aggregation and subsequent fibrillogenesis of amyloid-ß protein (Aß) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aß fibrillogenesis in the brain is important for the treatment of AD. Our previous study has proven that tolcapone inhibits Aß fibrillogenesis and alleviates its cytotoxicity based on systematic in vitro and in vivo experiments. However, the severe hepatotoxicity of tolcapone seriously limits its further potential application in the treatment of AD. Herein, an inhibitory effect of a low-toxicity tolcapone derivative (Tol-D) on Aß fibrillogenesis was explored. Based on the thioflavin T fluorescence data, Tol-D inhibited Aß fibrillogenesis, and the inhibitory capacity increased with the increase of its concentrations with an IC50 of ∼8.99 µM. The results of cytotoxicity showed that Tol-D greatly reduced the cytotoxicity induced by Aß42 fibrillogenesis. Moreover, Tol-D significantly alleviated Aß deposits and extended the lifespan of nematodes in transgenic Caenorhabditis elegans models. Finally, Tol-D significantly relieved Aß-induced cognitive dysfunction in mice experiments. Overall, the above experimental results indicated that Tol-D is a novel candidate therapeutic compound for the treatment of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cognitive Dysfunction/metabolism , Mice , Peptide Fragments , Tolcapone/therapeutic use
6.
Bioorg Chem ; 116: 105387, 2021 11.
Article in English | MEDLINE | ID: mdl-34628225

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that has multiple causes. Therefore, multiple-target-directed ligands (MTDLs), which act on multiple targets, have been developed as a novel strategy for AD therapy. In this study, novel drug candidates were designed and synthesized by the covalent linkings of tacrine, a previously used anti-AD acetylcholinesterase (AChE) inhibitor, and dipicolylamine, an ß-amyloid (Aß) aggregation inhibitor. Most tacrine-dipicolylamine dimers potently inhibited AChE and Aß1-42 aggregation in vitro, and 13a exhibited nanomolar level inhibition. Molecular docking analysis suggested that 13a could interact with the catalytic active sites and the peripheral anion site of AChE, and bind to Aß1-42 pentamers. Moreover, 13a effectively attenuated Aß1-42 oligomers-induced cognitive dysfunction in mice by activating the cAMP-response element binding protein/brain-derived neurotrophic factor signaling pathway, decreasing tau phosphorylation, preventing synaptic toxicity, and inhibiting neuroinflammation. The safety profile of 13a in mice was demonstrated by acute toxicity experiments. All these results suggested that novel tacrine-dipicolylamine dimers, especially 13a, have multi-target neuroprotective and cognitive-enhancing potentials, and therefore might be developed as MTDLs to combat AD.


Subject(s)
Alzheimer Disease/drug therapy , Amines/pharmacology , Cholinesterase Inhibitors/pharmacology , Drug Design , Neuroprotective Agents/pharmacology , Picolinic Acids/pharmacology , Tacrine/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amines/chemistry , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Picolinic Acids/chemistry , Protein Aggregates/drug effects , Structure-Activity Relationship , Tacrine/chemistry
7.
ACS Chem Neurosci ; 10(11): 4741-4756, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31639294

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive neurodegeneration and impaired cognitive functions. Fascaplysin is a ß-carboline alkaloid isolated from marine sponge Fascaplysinopsis bergquist in 1988. Previous studies have shown that fascaplysin might act on acetylcholinesterase and ß-amyloid (Aß) to produce anti-AD properties. In this study, a series of fascaplysin derivatives were synthesized. The cholinesterase inhibition activities, the neuronal protective effects, and the toxicities of these compounds were evaluated in vitro. Compounds 2a and 2b, the two most powerful compounds in vitro, were further selected to evaluate their cognitive-enhancing effects in animals. Both 2a and 2b could ameliorate cognitive dysfunction induced by scopolamine or Aß oligomers without affecting locomotor functions in mice. We also found that 2a and 2b could prevent cholinergic dysfunctions, decrease pro-inflammatory cytokine expression, and inhibit Aß-induced tau hyperphosphorylation in vivo. Most importantly, pharmacodynamics studies suggested that 2b could penetrate the blood-brain barrier and be retained in the central nervous system. All these results suggested that fascaplysin derivatives are potent multitarget agents against AD and might be clinical useful for AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Drug Delivery Systems/methods , Indoles/administration & dosage , Indoles/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred ICR , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...