Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Publication year range
1.
Acad Radiol ; 31(3): 812-821, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37980221

ABSTRACT

RATIONALE AND OBJECTIVES: To investigate whether kinetic heterogeneity in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) improves the specificity of breast cancer (BC) diagnosis. MATERIALS AND METHODS: The DCE-MRI data of patients with benign breast tumours and BC from June 2020 to July 2022 were retrospectively evaluated. MATLAB and SPM were used to determine six major kinetic parameters: peak, enhancement volume, heterogeneity, as well as persistent, plateau, and washout proportions. Continuous variables were compared using the Student's t-test or Mann-Whitney U tests, and categorical variables were compared using the chi-square or Fisher's exact tests. Receiver operating characteristic curves were plotted. The intraclass correlation coefficient (ICC) was used to evaluate agreement between the two observers. Multivariate logistic regression analysis was conducted to calculate the odds ratios (ORs) with 95% confidence intervals (CIs) for the association between benign and malignant breast tumours. RESULTS: In total, 147 patients (mean age, 47 years old) were included in the study, 76 of whom had BC. Data analysis by the two observers showed good consistency in the peak, enhancement volume, persistent proportion, plateau proportion, washout proportion, and heterogeneity, with ICCs of 0.865, 0.988, 0.906, 0.940, 0.740, and 0.867, respectively (p < 0.001). In the DCE kinetic analysis, differences in all the six kinetic parameters were statistically significant (p < 0.05). The area under the curve for heterogeneity was 0.92 (95% CI:0.88,0.97), and the sensitivity and specificity were 0.895 and 0.845, respectively. Multivariate logistic regression analysis showed that heterogeneity was an independent predictor of BC compared to benign breast tumours (OR=2.020; 95% CI:1.316, 3.100; p = 0.001). CONCLUSION: The kinetic heterogeneity of DCE-MRI can effectively distinguish between benign and malignant breast tumours and improve the specificity of BC diagnosis.


Subject(s)
Breast Neoplasms , Contrast Media , Humans , Middle Aged , Female , Kinetics , Retrospective Studies , Breast Neoplasms/pathology , Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Breast/pathology , Diagnosis, Differential
2.
Sci Rep ; 11(1): 988, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441833

ABSTRACT

Ligusticum L., one of the largest members in Apiaceae, encompasses medicinally important plants, the taxonomic statuses of which have been proved to be difficult to resolve. In the current study, the complete chloroplast genomes of seven crucial plants of the best-known herbs in Ligusticum were presented. The seven genomes ranged from 148,275 to 148,564 bp in length with a highly conserved gene content, gene order and genomic arrangement. A shared dramatic decrease in genome size resulted from a lineage-specific inverted repeat (IR) contraction, which could potentially be a promising diagnostic character for taxonomic investigation of Ligusticum, was discovered, without affecting the synonymous rate. Although a higher variability was uncovered in hotspot divergence regions that were unevenly distributed across the chloroplast genome, a concatenated strategy for rapid species identification was proposed because separate fragments inadequately provided variation for fine resolution. Phylogenetic inference using plastid genome-scale data produced a concordant topology receiving a robust support value, which revealed that L. chuanxiong had a closer relationship with L. jeholense than L. sinense, and L. sinense cv. Fuxiong had a closer relationship to L. sinense than L. chuanxiong, for the first time. Our results not only furnish concrete evidence for clarifying Ligusticum taxonomy but also provide a solid foundation for further pharmaphylogenetic investigation.


Subject(s)
Genome, Plastid/genetics , Ligusticum/genetics , Chloroplasts/genetics , Evolution, Molecular , Gene Order/genetics , Genome Size/genetics , Genome, Chloroplast/genetics , Genomics/methods , Inverted Repeat Sequences/genetics , Phylogeny
3.
Zhongguo Zhong Yao Za Zhi ; 42(17): 3332-3340, 2017 Sep.
Article in Chinese | MEDLINE | ID: mdl-29192443

ABSTRACT

Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding.


Subject(s)
Expressed Sequence Tags , Genetic Markers , Ligusticum/classification , Microsatellite Repeats , Transcriptome , Plants, Medicinal/classification , Polymorphism, Genetic
4.
Sci Rep ; 7: 44300, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276531

ABSTRACT

The hoverflies Episyrphus balteatus and Eupeodes corollae (Diptera: Muscomorpha: Syrphidae) are important natural aphid predators. We obtained mitochondrial genome sequences from these two species using methods of PCR amplification and sequencing. The complete Episyrphus mitochondrial genome is 16,175 bp long while the incomplete one of Eupeodes is 15,326 bp long. All 37 typical mitochondrial genes are present in both species and arranged in ancestral positions and directions. The two mitochondrial genomes showed a biased A/T usage versus G/C. The cox1, cox2, cox3, cob and nad1 showed relatively low level of nucleotide diversity among protein-coding genes, while the trnM was the most conserved one without any nucleotide variation in stem regions within Muscomorpha. Phylogenetic relationships among the major lineages of Muscomorpha were reconstructed using a complete set of mitochondrial genes. Bayesian and maximum likelihood analyses generated congruent topologies. Our results supported the monophyly of five species within the Syrphidae (Syrphoidea). The Platypezoidea was sister to all other species of Muscomorpha in our phylogeny. Our study demonstrated the power of the complete mitochondrial gene set for phylogenetic analysis in Muscomorpha.


Subject(s)
DNA, Mitochondrial/genetics , Diptera/genetics , Genes, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Animals , Base Sequence , DNA, Mitochondrial/chemistry , Diptera/classification , Genetic Variation , Mitochondrial Proteins/genetics , Phylogeny , Sequence Analysis, DNA , Species Specificity
5.
Physiol Mol Biol Plants ; 23(1): 35-41, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28250582

ABSTRACT

Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.

SELECTION OF CITATIONS
SEARCH DETAIL