Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 676: 115234, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37422060

ABSTRACT

Abnormal expression of carcinoembryonic antigen (CEA) can be used for early diagnosis of various cancers (e.g. colorectal cancer, cervical carcinomas, and breast cancer). In this work, using l-cysteine-ferrocene-ruthenium nanocomposites (L-Cys-Fc-Ru) to immobilize secondary antibody (Ab2) and Au nanoparticles (NPs) as the substrate to ensure accurate capture of primary antibody (Ab1), a signal-on sandwich-like biosensor was constructed in the presence of CEA. Specifically, Ru nanoassemblies (NAs) were first prepared by a facile one-step solvothermal approach as signal amplifiers for the electrical signal of Fc. Based on specific immune recognition, as the increase of CEA concentration, the content of L-Cys-Fc-Ru-Ab2 captured on the electrode surface also increased, thus the signal of Fc gradually increased. Therefore, the quantitative detection of CEA can be realized according to the peak current of Fc. After a series of experiments, it was found that the biosensor has a wide detection range from 1.0 pg mL-1 to 100.0 ng mL-1 and a low detection limit down to 0.5 pg mL-1, as well as good selectivity, repeatability and stability. Furthermore, satisfactory results were also obtained for the determination of CEA in serums, which were comparable to commercial electrochemiluminescence (ECL) method. The developed biosensor shows great potential in clinical applications.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Metal Nanoparticles , Humans , Female , Carcinoembryonic Antigen , Gold/chemistry , Metal Nanoparticles/chemistry , Immunoassay/methods , Electrochemical Techniques/methods , Biosensing Techniques/methods , Limit of Detection
2.
Fungal Biol ; 120(2): 173-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26781374

ABSTRACT

Rapid identification of pathogenic yeasts is a crucial step in timely and appropriate antifungal therapy. For diagnostics in the clinical laboratory, simplified alternatives to barcoding are needed. CandiSelect 4 (CS4) medium, a chromogenic medium for isolation of clinical yeasts, allows routine recognition of Candida albicans and presumptive identification of Candida tropicalis, Candida glabrata, and Candida krusei. We evaluated an extension of this method with 46 non-Candida albicans Candida (NCAC) and 7 Malassezia species. The medium supported growth of all species tested and a wide diversity of cultural types were observed. Colony colours were in violet, turquoise (including green and blue), or white tinges. Eight NCAC species produced violet pigmentation similar to that of C. albicans. Most NCAC species, including C. glabrata and C. tropicalis were distributed in the turquoise group. Malassezia species were invariably blue.


Subject(s)
Candida albicans/isolation & purification , Candida/isolation & purification , Candidiasis/microbiology , Culture Media/chemistry , Mycological Typing Techniques/methods , Candida/classification , Candida/growth & development , Candida/metabolism , Candida albicans/classification , Candida albicans/growth & development , Candida albicans/metabolism , Culture Media/metabolism , Humans , Mycological Typing Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...