Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Front Cell Infect Microbiol ; 14: 1363276, 2024.
Article in English | MEDLINE | ID: mdl-38707511

ABSTRACT

Introduction: Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods: To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results: The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion: Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.


Subject(s)
Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Renal Insufficiency, Chronic , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Renal Insufficiency, Chronic/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Phylogeny , Faecalibacterium prausnitzii/genetics , Biodiversity , Dysbiosis/microbiology
2.
Synth Syst Biotechnol ; 8(4): 757-770, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38099061

ABSTRACT

Peptostreptococcus anaerobius is an anaerobic bacterium, which has been found selectively en-riched in the fecal and mucosal microbiota of colorectal cancer (CRC) patients. Emerging evidence suggest P. anaerobius may contribute to the development of CRC in human. In this study, we designed a multi-epitope chimeric vaccine against P. anaerobius PCWBR2, a recently identified adhesin that interacts directly with colon cell lines by binding α2/ß1 integrin frequently overexpressed in human CRC tumors and cell lines. Immunoinformatics tools predicted six cytotoxic T lymphocyte epitopes, five helper T lymphocyte epitopes, and six linear B lymphocyte epitopes. The predicted epitopes were joined with AAY or GPGPG linkers and a previously reported TLR4 agonist was added to the vaccine construct's N terminal as an adjuvant using EAAAK linkers and the order of epitopes was optimized. Further in silico analysis revealed that the vaccine construct possesses satisfactory antigenicity, allergenicity, solubility, physicochemical properties, adjuvant-TLR4 molecular docking, and immune profile characteristics. Our study provided a promising design for vaccines against P. anaerobius.

3.
Microbiome ; 11(1): 202, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684694

ABSTRACT

BACKGROUND: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS: We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1ß and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION: These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.


Subject(s)
CADASIL , Gastrointestinal Microbiome , Mental Disorders , Animals , Mice , Cytokines , gamma-Aminobutyric Acid
4.
Proc Natl Acad Sci U S A ; 120(15): e2218469120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37014865

ABSTRACT

Pyroptosis is an inflammatory form of cell death induced upon recognition of invading microbes. During an infection, pyroptosis is enhanced in interferon-gamma-exposed cells via the actions of members of the guanylate-binding protein (GBP) family. GBPs promote caspase-4 (CASP4) activation by enhancing its interactions with lipopolysaccharide (LPS), a component of the outer envelope of Gram-negative bacteria. Once activated, CASP4 promotes the formation of noncanonical inflammasomes, signaling platforms that mediate pyroptosis. To establish an infection, intracellular bacterial pathogens, like Shigella species, inhibit pyroptosis. The pathogenesis of Shigella is dependent on its type III secretion system, which injects ~30 effector proteins into host cells. Upon entry into host cells, Shigella are encapsulated by GBP1, followed by GBP2, GBP3, GBP4, and in some cases, CASP4. It has been proposed that the recruitment of CASP4 to bacteria leads to its activation. Here, we demonstrate that two Shigella effectors, OspC3 and IpaH9.8, cooperate to inhibit CASP4-mediated pyroptosis. We show that in the absence of OspC3, an inhibitor of CASP4, IpaH9.8 inhibits pyroptosis via its known degradation of GBPs. We find that, while some LPS is present within the host cell cytosol of epithelial cells infected with wild-type Shigella, in the absence of IpaH9.8, increased amounts are shed in a GBP1-dependent manner. Furthermore, we find that additional IpaH9.8 targets, likely GBPs, promote CASP4 activation, even in the absence of GBP1. These observations suggest that by boosting LPS release, GBP1 provides CASP4-enhanced access to cytosolic LPS, thus promoting host cell death via pyroptosis.


Subject(s)
Lipopolysaccharides , Shigella , Bacteria/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Lipopolysaccharides/metabolism , Pyroptosis , Shigella/metabolism , Caspases, Initiator/metabolism
5.
Proc Natl Acad Sci U S A ; 120(4): e2219679120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649429

ABSTRACT

The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Coinfection , Animals , Mice , Anti-Bacterial Agents/pharmacology , Micelles , Staphylococcus aureus , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Biofilms , Microbial Sensitivity Tests , Pseudomonas aeruginosa
6.
Front Microbiol ; 13: 955297, 2022.
Article in English | MEDLINE | ID: mdl-36406399

ABSTRACT

The microbiota plays a crucial role in individuals' early and long-term health. Previous studies indicated that the microbial regulation of health may start before birth. As the in utero environment is (nearly) sterile, the regulation is probably be originated from maternal microbiota and mediated by their metabolites transferred across the placenta. After the birth, various metabolites are continuously delivered to offspring through human milk feeding. Meanwhile, some components, for example, human milk oligosaccharides, in human milk can only be fermented by microbes, which brings beneficial effects on offspring health. Hence, we speculated that human milk-derived metabolites may also play roles in microbial regulation. However, reports between maternal-associated microbial metabolites and offspring diseases are still lacking and sparsely distributed in several fields. Also, the definition of the maternal-associated microbial metabolite is still unclear. Thus, it would be beneficial to comb through the current knowledge of these metabolites related to diseases for assisting our goals of early prediction, early diagnosis, early prevention, or early treatment through actions only on mothers. Therefore, this review aims to present studies showing how researchers came to the path of investigating these metabolites and then to present studies linking them to the development of offspring asthma, type 1 diabetes mellitus, food allergy, neonatal necrotizing enterocolitis, or autism spectrum disorder. Potential English articles were collected from PubMed by searching terms of disease(s), maternal, and a list of microbial metabolites. Articles published within 5 years were preferred.

7.
Microbiol Spectr ; 10(6): e0211622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36255293

ABSTRACT

A plethora of studies have reported the associations between microbiota and multiple diseases, leading to the development of at least four databases to demonstrate microbiota-disease associations, i.e., gutMDisorder, mBodyMap, Gmrepo, and Amadis. Moreover, gut microbiota mediates drug efficacy and toxicity, whereas a comprehensive database to elucidate the microbiota-drug associations is lacking. Here, we report an open-access knowledge base, MADET (Microbiomics of Anticancer Drug Efficacy and Toxicity), which harbors 483 manually annotated microbiota-drug associations from 26 studies. MADET provides user-friendly functions allowing users to freely browse, search, and download data conveniently from the database. Users can customize their search filters in MADET using different types of keywords, including bacterial name (e.g., Akkermansia muciniphila), anticancer treatment (e.g., anti-PD-1 therapy), and cancer type (e.g., lung cancer) with different types of experimental evidence of microbiota-drug association and causation. We have also enabled user submission to further enrich the data documented in MADET. The MADET database is freely available at https://www.madet.info. We anticipate that MADET will serve as a useful resource for a better understanding of microbiota-drug associations and facilitate the future development of novel biomarkers and live biotherapeutic products for anticancer therapies. IMPORTANCE Human microbiota plays an important role in mediating drug efficacy and toxicity in anticancer treatment. In this work, we developed a comprehensive online database, which documents over 480 microbiota-drug associations manually curated from 26 research articles. Users can conveniently browse, search, and download the data from the database. Search filters can be customized using different types of keywords, including bacterial name (e.g., Akkermansia muciniphila), anticancer treatment (e.g., anti-PD-1 therapy), and cancer type (e.g., lung cancer), with different types of experimental evidence of microbiota-drug association. We anticipate that this database will serve as a convenient platform for facilitating research on microbiota-drug associations, including the development of novel biomarkers for predicting drug outcomes as well as novel live biotherapeutic products for improving the outcomes of anticancer drugs.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Databases, Factual , Bacteria , Antineoplastic Agents/adverse effects
8.
Front Psychiatry ; 13: 936009, 2022.
Article in English | MEDLINE | ID: mdl-35911247

ABSTRACT

Background: Premenstrual syndrome/premenstrual dysphoric disorder is a serious condition affecting women worldwide, causing clinically significant distress or interference. Therefore, solving these diseases has become the utmost concern worldwide, culminating in numerous studies. In this study, we performed bibliometric analysis on the 100 most cited papers with the aim of identifying research hot spots and trends in this field. Methods: We screened the Science Citation Index Expanded (SCIE) of Web of Science (WOS) to identify the top 100 cited studies on PMS/PMDD. Next, we analyzed relevant literature from various journals, countries/regions, institutions, authors, and keywords. Finally, we used VOSviewer and Citespace software to generate knowledge maps and identify hot spots and trends. Results: The top 100 highly cited studies were published in 55 journals, between 1999 and 2017, across 24 countries/regions around the world. Most articles were published in Obstetrics and Gynecology, whereas Psych neuroendocrinology had the largest average number of citations per paper. The United States had the highest number of publications, followed by England, Canada, and Sweden. The top three institutions that published the highly cited literature were the University of Pennsylvania, Yale University, and National Institute of Mental Health (NIMH). Obstetrics, Gynecology, Psychiatry, and Reproductive Biology were the main research directions, whereas the top 10 Co-occurrence of Keywords included double-blind, fluoxetine, efficacy, prevalence, epidemiology, phase sertraline treatment, depression, progesterone, placebo, and placebo-controlled trial. Results from cluster analysis indicated that more comprehensive epidemiology and steroid pathogenesis have gradually become the hot spots and trends. Conclusion: These findings demonstrated that bibliometric analysis can intuitively and rapidly reveal the frontiers and hot spots of research in PMS/PMDD. Notably, epidemiology, steroid pathogenesis, GABAA receptor delta subunits, and double-blind placebo-controlled trials are potential areas of focus for future research.

9.
Front Vet Sci ; 9: 946204, 2022.
Article in English | MEDLINE | ID: mdl-35923817

ABSTRACT

The aim of this study was to investigate the responses of non-starch polysaccharide (NSP) enzymes and protease combination on growth performance, meat quality, and nutrients digestibility of yellow-feathered broilers fed with corn-soybean meal basal diets with normal and subnormal crude protein (CP) levels. The experimental design was completely randomized with a 2 × 2 factorial arrangement of treatments, including six replicates of 20 birds per pen. Two basal diets were formulated with normal CP level as positive control (PC) and subnormal CP level without extra essential amino acid (AA) supplementation as negative control (NC). The basal diets were supplemented without or with NSP enzymes and protease. Broilers fed with the NC diet had lower (P < 0.05) final body weight (BW), average daily weight gain (ADG) on days 1-21, 22-56 and 1-56 and higher (P < 0.05) feed-to-gain ratio (F/G) on day 22-56 than those fed with PC diet. The broilers fed with the NC diet had higher (P < 0.05) L* and b* values in thigh muscle, crypt depth in the duodenum, and dry matter (DM) digestibility as well as lower (P < 0.05) villus height, musculature thicknesses, and villus height: crypt depth in the duodenum than those fed with the PC diet. Dietary NSP enzymes and protease combination increased (P < 0.05) the ADG and F/G of the broilers on days 1-56, and pH values in breast and thigh muscles as well as the digestibility of DM, gross energy (GE), CP and most AAs of the broilers on day 56. Compared with the PC diet, the combination of NSP enzymes and protease exhibited greater (P < 0.05) improvements in the digestibility of DM, CP, and some AAs (Asp, Ile, and Leu) in the broilers fed with the NC diet. In conclusion, reducing CP diet without essential AA supplementation impaired the growth performance and meat color of the thigh muscles of the broilers. The combination of NSP enzymes and protease effectively improved the growth performance, meat quality, and nutritional values of the broilers. In terms of the digestibility of DM, CP, and some AAs, the magnitude of response to the addition of NSP enzymes and protease was greater in the low nutritional-quality diet with a subnormal CP level.

10.
EBioMedicine ; 83: 104197, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35933808

ABSTRACT

Over the last decade, mounting evidence has revealed the key roles of gut microbiota in modulating the efficacy and toxicity of anticancer drugs, via mechanisms such as immunomodulation and microbial enzymatic degradation. As such, human microbiota presents as an exciting prospect for developing biomarkers for predicting treatment outcomes and interventional approaches for improving therapeutic effects. In this review, we analyze the current knowledge of the interplays among gut microorganisms, host responses and anticancer therapies (including cytotoxic chemotherapy and targeted therapy), with an emphasis on the immunomodulation function of microbiota which facilitates the efficacy of immune checkpoint inhibitors. Moreover, we propose several microbiota-modulating strategies including fecal microbiota transplantation and probiotics, which can be pursued to optimize the use and development of anticancer treatments. We anticipate that future clinical and preclinical studies will highlight the significance of human microbiome as a promising target towards precision medicine in cancer therapies. FUNDING: National Key Research and Development Program of China (2020YFA0907800), Shenzhen Science and Technology Innovation Program (KQTD20200820145822023) and National Natural Science Foundation of China (31900056 and 32000096).


Subject(s)
Antineoplastic Agents , Microbiota , Probiotics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers , Fecal Microbiota Transplantation , Humans , Immune Checkpoint Inhibitors , Probiotics/therapeutic use
11.
Front Microbiol ; 13: 879207, 2022.
Article in English | MEDLINE | ID: mdl-35875544

ABSTRACT

The gut microbiome plays a pivotal role in maintaining the health of the hosts; however, there is accumulating evidence that certain bacteria in the host, termed pathobionts, play roles in the progression of diseases. Although antibiotics can be used to eradicate unwanted bacteria, the side effects of antibiotic treatment lead to a great need for more targeted antimicrobial agents as tools to modulate the microbiome more precisely. Herein, we reviewed narrow-spectrum antibiotics naturally made by plants and microorganisms, followed by more targeted antibiotic agents including synthetic peptides, phage, and targeted drug delivery systems, from the perspective of using them as potential tools for modulating the gut microbiome for favorable effects on the health of the host. Given the emerging discoveries on pathobionts and the increasing knowledge on targeted antimicrobial agents reviewed in this article, we anticipate targeted antimicrobial agents will emerge as a new generation of a drug to treat microbiome-involved diseases.

12.
Synth Syst Biotechnol ; 6(3): 135-143, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34151035

ABSTRACT

SARS-CoV-2, the causative agent for COVID-19, infect human mainly via respiratory tract, which is heavily inhabited by local microbiota. However, the interaction between SARS-CoV-2 and nasopharyngeal microbiota, and the association with metabolome has not been well characterized. Here, metabolomic analysis of blood, urine, and nasopharyngeal swabs from a group of COVID-19 and non-COVID-19 patients, and metagenomic analysis of pharyngeal samples were used to identify the key features of COVID-19. Results showed lactic acid, l-proline, and chlorogenic acid methyl ester (CME) were significantly reduced in the sera of COVID-19 patients compared with non-COVID-19 ones. Nasopharyngeal commensal bacteria including Gemella morbillorum, Gemella haemolysans and Leptotrichia hofstadii were notably depleted in the pharynges of COVID-19 patients, while Prevotella histicola, Streptococcus sanguinis, and Veillonella dispar were relatively increased. The abundance of G. haemolysans and L. hofstadii were significantly positively associated with serum CME, which might be an anti-SARS-CoV-2 bacterial metabolite. This study provides important information to explore the linkage between nasopharyngeal microbiota and disease susceptibility. The findings were based on a very limited number of patients enrolled in this study; a larger size of cohort will be appreciated for further investigation.

13.
Protein Cell ; 12(5): 331-345, 2021 05.
Article in English | MEDLINE | ID: mdl-32601832

ABSTRACT

Inflammatory bowel disease (IBD) has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear. In the past decade, gut microbiota dysbiosis has consistently been associated with IBD. Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD, it is often hypothesized that at least some of alteration in microbiome is protective or causative. In this article, we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models. Specifically, we reviewed the potential protective bacterial pathways and species against IBD, as well as the potential causative bacterial pathways and species of IBD. We also reviewed the potential roles of some members of mycobiome and virome in IBD. Lastly, we covered the current status of therapeutic approaches targeting microbiome, which is a promising strategy to alleviate and cure this inflammatory disease.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Models, Biological , Dysbiosis/microbiology , Dysbiosis/therapy , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy
14.
Proc Natl Acad Sci U S A ; 115(25): 6452-6457, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866849

ABSTRACT

Over the course of an infection, many Gram-negative bacterial pathogens use complex nanomachines to directly inject tens to hundreds of proteins (effectors) into the cytosol of infected host cells. These effectors rewire processes to promote bacterial replication and spread. The roles of effectors in pathogenesis have traditionally been investigated by screening for phenotypes associated with their absence, a top-down approach that can be limited, as effectors often act in a functionally redundant or additive manner. Here we describe a synthetic Escherichia coli-based bottom-up platform to conduct gain-of-function screens for roles of individual Shigella effectors in pathogenesis. As proof of concept, we screened for Shigella effectors that limit cell death induced on cytosolic entry of bacteria into epithelial cells. Using this platform, in addition to OspC3, an effector known to inhibit cell death via pyroptosis, we have identified OspD2 and IpaH1.4 as cell death inhibitors. In contrast to almost all type III effectors, OspD2 does not target a host cell process, but rather regulates the activity of the Shigella type III secretion apparatus limiting the cytosolic delivery (translocation) of effectors during an infection. Remarkably, by limiting the translocation of a single effector, VirA, OspD2 controls the timing of epithelial cell death via calpain-mediated necrosis. Together, these studies provide insight into the intricate manner by which Shigella effectors interact to establish a productive intracytoplasmic replication niche before the death of infected epithelial cells.


Subject(s)
Bacterial Proteins/metabolism , Cell Death/physiology , Epithelial Cells/metabolism , Shigella/metabolism , Bacterial Secretion Systems/metabolism , Cell Line, Tumor , Epithelial Cells/microbiology , Escherichia coli/metabolism , HeLa Cells , Host-Pathogen Interactions/physiology , Humans , Virulence Factors/metabolism
15.
BMC Microbiol ; 17(1): 217, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29137620

ABSTRACT

BACKGROUND: Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as V. anguillarum. RESULTS: Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (Oncorhynchus mykiss). Only the isocitrate dehydrogenase (icd) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the icd mutant was shown to be immunoprotective against wild type V. anguillarum infection. There was no significant decrease in the expression of the three hemolysin genes detected by qRT-PCR. Additionally, only the icd mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type icd gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout. CONCLUSIONS: The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth. Additionally, a live vaccine strain could be created from an icd deletion strain.


Subject(s)
Fish Diseases/immunology , Fish Diseases/microbiology , Isocitrate Dehydrogenase/genetics , Oncorhynchus mykiss/immunology , Vibrio Infections/veterinary , Vibrio , Virulence/genetics , Adjuvants, Immunologic/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Gene Expression/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Isocitrate Dehydrogenase/immunology , Mutation , Oncorhynchus mykiss/microbiology , Vaccines, Attenuated/immunology , Vibrio/enzymology , Vibrio/genetics , Vibrio/immunology , Vibrio/pathogenicity , Vibrio Infections/immunology , Vibrio Infections/microbiology
16.
BMC Microbiol ; 13: 271, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24279474

ABSTRACT

BACKGROUND: Vibrio anguillarum is the causative agent of vibriosis in fish. Several extracellular proteins secreted by V. anguillarum have been shown to contribute to virulence. While two hemolysin gene clusters, vah1-plp and rtxACHBDE, have been previously identified and described, the activities of the protein encoded by the plp gene were not known. Here we describe the biochemical activities of the plp-encoded protein and its role in pathogenesis. RESULTS: The plp gene, one of the components in vah1 cluster, encodes a 416-amino-acid protein (Plp), which has homology to lipolytic enzymes containing the catalytic site amino acid signature SGNH. Hemolytic activity of the plp mutant increased 2-3-fold on sheep blood agar indicating that plp represses vah1; however, hemolytic activity of the plp mutant decreased by 2-3-fold on fish blood agar suggesting that Plp has different effects against erythrocytes from different species. His6-tagged recombinant Plp protein (rPlp) was over-expressed in E. coli. Purified and re-folded active rPlp exhibited phospholipase A2 activity against phosphatidylcholine and no activity against phosphatidylserine, phosphatidylethanolamine, or sphingomyelin. Characterization of rPlp revealed broad optimal activities at pH 5-9 and at temperatures of 30-64°C. Divalent cations and metal chelators did not affect activity of rPlp. We also demonstrated that Plp was secreted using thin layer chromatography and immunoblot analysis. Additionally, rPlp had strong hemolytic activity towards rainbow trout erythrocytes, but not to sheep erythrocytes suggesting that rPlp is optimized for lysis of phosphatidylcholine-rich fish erythrocytes. Further, only the loss of the plp gene had a significant effect on hemolytic activity of culture supernatant on fish erythrocytes, while the loss of rtxA and/or vah1 had little effect. However, V. anguillarum strains with mutations in plp or in plp and vah1 exhibited no significant reduction in virulence compared to the wild type strain when used to infect rainbow trout. CONCLUSION: The plp gene of V. anguillarum encoding a phospholipase with A2 activity is specific for phosphatidylcholine and, therefore, able to lyse fish erythrocytes, but not sheep erythrocytes. Mutation of plp does not affect the virulence of V. anguillarum in rainbow trout.


Subject(s)
Bacterial Proteins/metabolism , Hemolysin Proteins/metabolism , Phosphatidylcholines/metabolism , Phospholipases A2/metabolism , Vibrio/enzymology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Culture Media/chemistry , Enzyme Stability , Erythrocytes/metabolism , Escherichia coli/genetics , Gene Expression , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Hemolysin Proteins/isolation & purification , Hydrogen-Ion Concentration , Oncorhynchus mykiss , Phospholipases A2/chemistry , Phospholipases A2/genetics , Phospholipases A2/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sheep , Substrate Specificity , Temperature , Virulence Factors/chemistry , Virulence Factors/genetics , Virulence Factors/isolation & purification , Virulence Factors/metabolism
17.
Infect Immun ; 81(10): 3566-76, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23836825

ABSTRACT

Hemolysins produced by Vibrio anguillarum have been implicated in the development of hemorrhagic septicemia during vibriosis, a fatal fish disease. Previously, two hemolysin gene clusters responsible for the hemolysis and cytotoxicity of V. anguillarum were identified: the vah1-plp gene cluster and the rtxACHBDE gene cluster. In this study, we identified the hns gene, which encodes the H-NS protein and acts as a negative regulator of both gene clusters. The V. anguillarum H-NS protein shares strong homology with other bacterial H-NS proteins. An hns mutant exhibited increased hemolytic activity and cytotoxicity compared to the wild-type strain. Complementation of the hns mutation restored hemolytic activity and cytotoxicity levels to nearly wild-type levels. Furthermore, expression of rtxA, rtxH, rtxB, vah1, and plp increased in the hns mutant and decreased in the hns-complemented mutant strain compared to expression in the wild-type strain. Additionally, experiments using DNase I showed that purified recombinant H-NS protected multiple sites in the promoter regions of both gene clusters. The hns mutant also exhibited significantly attenuated virulence against rainbow trout. Complementation of the hns mutation restored virulence to wild-type levels, suggesting that H-NS regulates many genes that affect fitness and virulence. Previously, we showed that HlyU is a positive regulator of expression for both gene clusters. In this study, we demonstrate that upregulation by hlyU is hns dependent, suggesting that H-NS acts to repress or silence both gene clusters and HlyU acts to relieve that repression or silencing.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Hemolysin Proteins/metabolism , Vibrio/genetics , Vibrio/metabolism , Animals , Bacterial Proteins/genetics , Base Sequence , DNA, Bacterial , DNA, Intergenic , DNA-Binding Proteins/genetics , Fish Diseases/microbiology , Hemolysin Proteins/genetics , Molecular Sequence Data , Multigene Family , Mutation , Oncorhynchus mykiss , Protein Binding , Vibrio/classification , Vibrio/pathogenicity , Virulence
18.
J Bacteriol ; 193(18): 4779-89, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21764937

ABSTRACT

The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5' random amplification of cDNA ends (5'-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays.


Subject(s)
Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial , Hemolysin Proteins/biosynthesis , Transcription Factors/metabolism , Vibrio/genetics , Vibrio/metabolism , Amino Acid Sequence , Animals , Cell Line , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Erythrocytes/drug effects , Fishes , Gene Deletion , Gene Expression Profiling , Genetic Complementation Test , Hemolysis , Molecular Sequence Data , Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sheep , Transcription Factors/genetics , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...