Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stress Biol ; 4(1): 9, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300431

ABSTRACT

The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.

2.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216182

ABSTRACT

The double homeobox (Dux) gene, encoding a double homeobox transcription factor, is one of the key drivers of totipotency in mice. Recent studies showed Dux was temporally expressed at the 2-cell stage and acted as a transcriptional activator during zygotic genome activation (ZGA) in embryos. A similar activation occurs in mouse embryonic stem cells, giving rise to 2-cell-like cells (2CLCs). Though the molecular mechanism underlying this expanded 2CLC potency caused by Dux activation has been partially revealed, the regulation mechanisms controlling Dux expression remain elusive. Here, we discuss the latest advancements in the multiple levels of regulation of Dux expression, as well as Dux function in 2CLCs transition, aiming to provide a theoretical framework for understanding the mechanisms that regulate totipotency.


Subject(s)
Genes, Homeobox/genetics , Transcription Factors/genetics , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Genome/genetics , Homeodomain Proteins , Humans , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...