Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 2): 026603, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17930163

ABSTRACT

By means of the variational formalism for the nonlinear Schrödinger equation, we find an explicit relation for the power of a pulse in terms of its duration, chirp and fiber parameters (group-velocity dispersion and self-phase modulation parameters). Then, using that relation, we derive the explicit analytical expressions for the variational equations corresponding to the amplitude, width, and chirp of the pulse. The derivation of the analytical expressions for the variational equations is possible for the condition when the Hamiltonian of the system is zero. Finally, for Gaussian and hyperbolic secant ansatz, we show good agreement between the results obtained from the analytical expressions and the direct numerical simulation of the nonlinear Schrödinger equation.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(1 Pt 2): 016608, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11461429

ABSTRACT

We present a projection-operator method to express the generalized nonlinear Schrödinger equation for pulse propagation in optical fibers, in terms of the pulse parameters, called collective variables, such as the pulse width, amplitude, chirp, and frequency. The collective variable (CV) equations of motion are derived by imposing a set of constraints on the CVs to minimize the soliton dressing during its propagation. The lowest-order approximation of this CV approach is shown to be equivalent to the variational Lagrangian method. Finally, we demonstrate the application of this CV theory for pulse propagation in dispersion-managed optical fiber links.

3.
Opt Lett ; 26(20): 1544-6, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-18049657

ABSTRACT

Using the equations of motion of pulse width and chirp, we present an analytical method for designing dispersion-managed (DM) fiber systems without optical losses. We show that the initial Gaussian pulse considered for the analytical design of periodically amplified DM fiber systems with losses will propagate as a proximity fixed point. Then averaging the DM soliton fields obtained from the slow dynamics of the proximity fixed point will yield the exact fixed point.

SELECTION OF CITATIONS
SEARCH DETAIL
...