Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37873169

ABSTRACT

Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFßTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/ßTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.

2.
PLoS Biol ; 18(12): e3000975, 2020 12.
Article in English | MEDLINE | ID: mdl-33306668

ABSTRACT

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin/metabolism , Ubiquitin-Protein Ligases/metabolism , Anaphase-Promoting Complex-Cyclosome/physiology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/physiology , Cell Cycle/physiology , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/genetics , Computer Simulation , HEK293 Cells , HeLa Cells , Humans , Protein Processing, Post-Translational , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination
3.
Trends Cell Biol ; 30(8): 640-652, 2020 08.
Article in English | MEDLINE | ID: mdl-32513610

ABSTRACT

The E2F family of transcriptional regulators sits at the center of cell cycle gene expression and plays vital roles in normal and cancer cell cycles. Whereas control of E2Fs by the retinoblastoma family of proteins is well established, much less is known about their regulation by ubiquitin pathways. Recent studies placed the Skp1-Cul1-F-box-protein (SCF) family of E3 ubiquitin ligases with the F-box protein Cyclin F at the center of E2F regulation, demonstrating temporal proteolysis of both activator and atypical repressor E2Fs. Importantly, these E2F members, in particular activator E2F1 and repressors E2F7 and E2F8, form a feedback circuit at the crossroads of cell cycle and cell death. Moreover, Cyclin F functions in a reciprocal circuit with the cell cycle E3 ligase anaphase-promoting complex/cyclosome (APC/C), which also controls E2F7 and E2F8. This review focuses on the complex contours of feedback within this circuit, highlighting the deep crosstalk between E2F, SCF-Cyclin F, and APC/C in regulating the oscillator underlying human cell cycles.


Subject(s)
Cyclins/metabolism , E2F Transcription Factors/metabolism , Ubiquitin/metabolism , Animals , Cell Cycle/genetics , Eukaryotic Cells/cytology , Eukaryotic Cells/metabolism , Humans , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...