Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Immunol ; 25(1): 43, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987686

ABSTRACT

OBJECTIVE: HIV has been reported to interfere with protective vaccination against multiple pathogens, usually through the decreased effectiveness of the antibody responses. We aimed to assess neutralizing antibody responses induced by COVID-19 vaccination in PLWH in Brazzaville, Republique of the Congo. METHOD: The study was conducted at the Ambulatory Treatment Center of the National HIV Program, in charge of over 6000 PLWH, and the health center of FCRM in Brazzaville, Republic of the Congo. Participants were divided into two groups: PLWH with well-controlled HIV infection (CD4 counts no older than one week ≥ 800 / mm3, undetectable viral load of a period no older than one week and regularly taking Highly Active Antiretroviral Therapy for at least 6 months) and PLWOH. These groups were subdivided by vaccination status: fully vaccinated with adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac) or inactivated virus vaccine (Sinopharm/BBIP-CorV) and a control group of unvaccinated healthy individuals. All participants were RT-PCR negative at inclusion and/or with no documented history of SARS-CoV-2 infection. ELISA method was used for detecting IgG and neutralizing Antibodies against SARS-CoV-2 antigens using a commercial neutralizing assay. RESULTS: We collected oropharyngeal and blood samples from 1016 participants including 684 PLWH and 332 PLWOH. Both PLWH and PLWOH elicited high levels of antibody responses after complete vaccination with inactivated virus vaccine (Sinopharm/BBIP-CorV) and adenovirus-based vaccines (Janssen/Ad26.COV2.S and Sputnik/Gam-COVID-Vac). Overall, no difference was observed in neutralization capacity between PLWOH and PLWH with well-controlled HIV infection. CONCLUSION: The results from this study underline the importance of implementing integrated health systems that provide PLWH the opportunity to benefit HIV prevention and care, at the same time while monitoring their vaccine-induced antibody kinetics for appropriate booster schedules.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , HIV Infections , SARS-CoV-2 , Vaccination , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , HIV Infections/immunology , HIV Infections/drug therapy , Male , Female , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Adult , SARS-CoV-2/immunology , Middle Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Neutralization Tests
2.
BMC Infect Dis ; 22(1): 610, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831798

ABSTRACT

BACKGROUND: Assessing immune responses after vaccination is part of the evaluation package of vaccine effectiveness in the real world. Regarding SARS-CoV-2, neutralizing antibody levels has been shown to be a good indicator of antibody immune response boosting. So far, limited data have been reported from Africa including in Central Africa. The objective of this study was to provide data on anti-S1 spike total IgG and neutralizing antibodies in vaccinated and non-vaccinated including naturally infected Congolese population during B.1.214.1 and B.1.617.2 variant waves. METHODS: Recruited patients were divided into 4 groups: (1) Naturally infected by the B.1.214.1 variant on January 2021 and followed up until September 2021. These patients have been vaccinated at month 07 and then followed up for 2 months post vaccination; (2) Naturally infected by the B.1.617.2 variant from June 2021; (3) unvaccinated SARS-CoV-2 individuals with no history of prior SARS-CoV-2 infection; (4) fully vaccinated individuals with sinopharm/BBIP-CorV or Janssen/Ad26.COV2.S. SARS-CoV-2 was detected by qRT-PCR and sequenced using Next-Generation Sequencing. ELISA method was used for detecting IgG, and neutralizing Antibody against SARS-CoV-2 antigens using commercial neutralizing assay. RESULTS: Individuals infected by the B.1214.1 variant elicited consistently high IgG titers at 02, 03 and 06 months. Two months post vaccination with BBIP-CorV, participants showed a significant increase by × 2.5 fold (p < 0.0001) of total IgG and X1.5 fold for neutralizing antibody capacity. This study showed that natural infection with B1.617.2 (delta) variant was more immunogenic compared to those being infected with B1.214.2 variant. We found a significantly higher concentration in anti-SARS-CoV-2 IgG (p < 0.0002) and antibodies neutralization capacity (P < 0.0001) in fully vaccinated compared to unvaccinated participants. Two months post vaccination, individuals who received Janssen/Ad26.COV2.S presented higher (p = 0.01) total IgG to spike protein compared to BBIP-CorV. CONCLUSION: Both natural infection and vaccination with BBIP-CorV and Janssen/Ad26.COV2.S induced antibody response in Congolese population. In addition, Janssen/Ad26.COV2.S was more immunogenic than Sinopharm/BBIP-CorV. There is a need to investigate the duration of these antibodies both in previously infected and naive vaccinated Congolese to allow public heath stakeholders to make evidence-based decision on vaccine schedule for the Congolese population.


Subject(s)
Antibody Formation , COVID-19 , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...