Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 116(1): 367-77, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22126437

ABSTRACT

In this work, we propose a new methodology to determine association scheme and association parameters (energy and volume) of a SAFT-type EoS for hydrogen-bonding molecules. This paper focuses on 1-alkanol molecules, but the new methodology can also be applied for any other associating system. The idea is to use molecular simulation technique to determine independently monomer and free hydrogen fractions from which the association scheme can be deduced. The 3B scheme thus appeared to be the most appropriate for 1-alkanols. Once the association scheme is defined, the association strength can be back-calculated from molecular simulation results and used as an independent property for the equation of state parameters regression, in addition of the classical phase properties such as vapor pressure and liquid molar volume. A new set of parameters for 1-alkanol for the PPC-SAFT equation of state has been proposed following this methodology. Results are found in good agreement with experimental data for both phase properties and free hydrogen-bonding sites. Hence, this new methodology makes it possible to optimize parameters allowing an accurate reproduction of pure compounds data and yielding physically significant values for associating energy and associating volume.

2.
Environ Sci Technol ; 45(6): 2486-92, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21341690

ABSTRACT

Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution. In this work, we present thermodynamic results of CO(2) solubility in aqueous amine solutions from a 6-reactor High Throughput Screening (HTS) experimental device. This device is fully automated and designed to perform sequential injections of CO(2) within stirred-cell reactors containing the solvent solutions. The gas pressure within each reactor is monitored as a function of time, and the resulting transient pressure curves are transformed into CO(2) absorption isotherms. Solubility measurements are first performed on monoethanolamine, diethanolamine, and methyldiethanolamine aqueous solutions at T = 313.15 K. Experimental results are compared with existing data in the literature to validate the HTS device. In addition, a comprehensive thermodynamic model is used to represent CO(2) solubility variations in different classes of amine structures upon a wide range of thermodynamic conditions. This model is used to fit the experimental data and to calculate the cyclic capacity, which is a key parameter for CO(2) process design. Solubility measurements are then performed on a set of 50 monoamines and cyclic capacities are extracted using the thermodynamic model, to asses the potential of these molecules for CO(2) capture.


Subject(s)
Amines/chemistry , Carbon Dioxide/analysis , High-Throughput Screening Assays/methods , Water Pollutants, Chemical/analysis , Absorption , Carbon Dioxide/chemistry , Models, Chemical , Solubility , Thermodynamics , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...