Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Foods ; 12(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37048348

ABSTRACT

Analysis of table olives microbiome using next-generation sequencing has enriched the available information about the microbial community composition of this popular fermented food. In this study, 16S and 18S rRNA sequencing was performed on table olives of five Greek popular cultivars, Halkidikis, Thassou, Kalamon, Amfissis, and Konservolia, fermented either by Greek style (in brine or salt-drying) or by Spanish style, in order to evaluate their microbial communities. Moreover, analytical methods were used to evaluate their biochemical properties. The prevailing bacterial species of all olives belonged to Lactobacillaceae, Leuconostocaceae, and Erwiniaceae families, while the most abundant yeasts were of the Pichiaceae family. Principal coordinates analysis showed a clustering of samples cured by salt-drying and of samples stored in brine, regardless of their cultivar. The biochemical evaluation of total phenol content, antioxidant activity, hydroxytyrosol, oleuropein, oleocanthal, and oleacein showed that salt-dried olives had low amounts of hydroxytyrosol, while Spanish-style green olives had the highest amounts of oleocanthal. All the other values exhibited various patterns, implying that more than one factor affects the biochemical identity of the final product. The protocols applied in this study can provide useful insights for the final product, both for the producers and the consumers.

2.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33920019

ABSTRACT

Histone acetylation is directly related to gene expression. In yeast, the acetyltransferase general control nonderepressible-5 (GCN5) targets histone H3 and associates with transcriptional co-activators alteration/deficiency in activation-2 (ADA2) and alteration/deficiency in activation-3 (ADA3) in complexes like SAGA. Arabidopsis thaliana has two genes encoding proteins, designated ADA3a and ADA3b, that correspond to yeast ADA3. We investigated the role of ADA3a and ADA3b in regulating gene expression during flowering time. Specifically, we found that knock out mutants ada3a-2 and the double mutant ada3a-2 ada3b-2 lead to early flowering compared to the wild type plants under long day (LD) conditions and after moving plants from short days to LD. Consistent with ADA3a being a repressor of floral initiation, FLOWERING LOCUS T (FT) expression was increased in ada3a mutants. In contrast, other genes involved in multiple pathways leading to floral transition, including FT repressors, players in GA signaling, and members of the SPL transcriptional factors, displayed reduced expression. Chromatin immunoprecipitation analysis revealed that ADA3a affects the histone H3K14 acetylation levels in SPL3, SPL5, RGA, GAI, and SMZ loci. In conclusion, ADA3a is involved in floral induction through a GCN5-containing complex that acetylates histone H3 in the chromatin of flowering related genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/physiology , Nuclear Proteins/metabolism , Transcription, Genetic , Acetylation , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , DNA, Bacterial/genetics , Epistasis, Genetic , Flowers/genetics , Gene Expression Regulation, Plant , Genome, Plant , Histones/metabolism , Mutation/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Phenotype , Phylogeny , Protein Binding , Protein Domains , Sequence Homology, Amino Acid , Time Factors
3.
Plants (Basel) ; 10(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562796

ABSTRACT

Transcription of protein-encoding genes starts with forming a pre-initiation complex comprised of RNA polymerase II and several general transcription factors. To activate gene expression, transcription factors must overcome repressive chromatin structure, which is accomplished with multiprotein complexes. One such complex, SAGA, modifies the nucleosomal histones through acetylation and other histone modifications. A prototypical histone acetyltransferase (HAT) known as general control non-repressed protein 5 (GCN5), was defined biochemically as the first transcription-linked HAT with specificity for histone H3 lysine 14. In this review, we analyze the components of the putative plant SAGA complex during plant evolution, and current knowledge on the biological role of the key components of the HAT module, GCN5 and ADA2b in plants, will be summarized.

4.
Plant Physiol Biochem ; 128: 41-49, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29753981

ABSTRACT

Olive tree is one of the most valuable crops cultivated for its oil that is rich in antioxidants. The beneficial effects of oleuropein and hydroxytyrosol (HT), the most abundant and the most powerful antioxidant respectively, as well as tyrosol, HT's precursor molecule, are well studied however their biosynthetic pathways are not yet clarified. The transcriptome analysis of the young olive fruit, cultivar "Koroneiki", revealed transcripts of all the enzymes used to reconstitute the biosynthetic pathway of tyrosol and HT in other organisms. We also identified transcripts of the genes that encode for enzymes involved in the secologanin biosynthesis, oleuropein's precursor molecule. Following the transcriptome analysis, the relative expression of the transcripts was monitored during fruit development and compared to the concentration of the 3 metabolites they synthesize at the same developmental stages. The highest expression levels, accompanied by the maximum concentration of the three metabolites, was found in the young olive fruit. The correlation between the expression profile and the metabolites' concentration indicates that the transcripts were correctly identified and the synthesis of the compounds is regulated at a transcriptional level. Interestingly, HT showed a sudden increment in the final developmental stage of the black mature fruit that is attributed to oleuropein catabolism.


Subject(s)
Fruit/growth & development , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Iridoids/metabolism , Olea/metabolism , Phenylethyl Alcohol/analogs & derivatives , Fruit/genetics , Iridoid Glucosides , Olea/genetics , Phenylethyl Alcohol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...