Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 6433577, 2022.
Article in English | MEDLINE | ID: mdl-35669727

ABSTRACT

Tan spot disease caused by Pyrenophora tritici-repentis was becoming more bred in Tunisia during the last decade. The search for resistant varieties against the increased virulence diversity of P. tritici-repentis is presently considered as a priority. Seven of the most commercialized durum wheat varieties in Tunisia (cvs. Maâli, Salim, Razzak, Monastir, Khiar, Inrat100, and Sculptur) were inoculated with five characterized fungal strains under field conditions, during two seasons. The variance analysis revealed that strains Ech8F6 and B4.8 used in inoculation are the most virulent ones. These strains hosting ToxB gene caused chlorosis symptom on the tested varieties. The other strains induced necrosis with yellow halo and host ToxA gene were less virulent. The area under disease progress curve values revealed that Maâli is the most vulnerable genotype compared to the new selected varieties Monastir and Inrat100. A variable tolerance rate of the varieties to tan spot disease was also highly visible on yield components. The losses were about 22.2% of the thousand kernel weight in Maâli variety, 35% of spikes/m2 in Inrat100 variety, 32.5% of kernel number/spike, and 25.2% of yield grain in Monastir variety. This effect evaluation of the strains harbouring ToxA and ToxB genes could be responsible for the identification of potentially susceptible genes Tsn1 and Tsc2 representing resistance sources for breeding programs.


Subject(s)
Plant Diseases , Triticum , Ascomycota , Host-Pathogen Interactions/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology
2.
Biomed Res Int ; 2022: 8497417, 2022.
Article in English | MEDLINE | ID: mdl-35392257

ABSTRACT

Septoria tritici blotch (STB) is a major disease problem of wheat worldwide. To optimize the introgression of resistance genes in elite genotypes throughout traditional or molecular breeding programs, a full understanding of the quantitative inheritance of resistance to Zymoseptoria tritici, plant height (PH), and thousand kernel weight (TKW) is needed. In this study, maternal and cytoplasmic effects of resistance to STB were investigated using P1 (susceptible, high-yielding line) and P2 (resistant, low-yielding line) durum wheat lines and their F1, RF1, F2, RF2, BC1, RBC1, BC2, and RBC2 progeny, assessed for resistance to STB during three growing seasons. Duncan mean's analysis revealed significant differences between generation means for STB, PH, and TKW. The two parents had an extreme pattern. The F1 and RF1 segregated close to their respective parents, suggesting the presence of cytoplasmic and maternal genetic effects for Z. tritici resistance, PH, and TKW. Separate generation mean's analysis confirmed the results of the Duncan test. A three-parameter model was found to be not adequate for all traits in all three growing years; while a digenic epistatic model with cytoplasmic or/and maternal effect was adequate for all cases. Narrow-sense heritability was in the range of 50-60%, 30-69%, and 28-31% for STB, PH, and TKW, respectively. For STB, high heritability and the presence of fixable epistatic effect is encouraging and could lead to creating varieties with the right female parent to exploit cytoplasmic and maternal effects in order to improve resistance to Z. tritici in durum wheat.


Subject(s)
Ascomycota , Triticum , Ascomycota/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Triticum/genetics
3.
PLoS One ; 16(6): e0252823, 2021.
Article in English | MEDLINE | ID: mdl-34129651

ABSTRACT

The reduction of the use chemical pesticides in agriculture is gaining importance as an objective of decision-makers in both politics and economics. Consequently, the development of technically efficient and economically affordable alternatives as, e.g., biological control agents or practices is highly solicited. Crown gall disease of dicotyledonous plants is caused by ubiquitous soil borne pathogenic bacteria of the Agrobacterium tumefaciens species complex, that comprises the species Agrobacterium fabrum and represents a globally relevant plant protection problem. Within the framework of a screening program for bacterial Agrobacterium antagonists a total of 14 strains were isolated from Tunisian soil samples and assayed for antagonistic activity against pathogenic agrobacteria. One particularly promising isolate, termed strain MBY2, was studied more in depth. Using a Multilocus Sequence Analysis (MLSA) approach, the isolate was assigned to the taxonomic species Bacillus velezensis. Strain MBY2 was shown to display antagonistic effects against the pathogenic A. fabrum strain C58 in vitro and to significantly decrease pathogen populations under sterile and non-sterile soil conditions as well as in the rhizosphere of maize and, to a lower extent, tomato plants. Moreover, the ability of B. velezensis MBY2 to reduce C58-induced gall development has been demonstrated in vivo on stems of tomato and almond plants. The present study describes B. velezensis MBY2 as a newly discovered strain holding potential as a biological agent for crown gall disease management.


Subject(s)
Agrobacterium/physiology , Antibiosis/physiology , Bacillus/physiology , Plant Tumors/microbiology , Solanum lycopersicum/microbiology , Zea mays/microbiology , Bacillus/classification , Bacillus/genetics , Biological Control Agents/pharmacology , Containment of Biohazards/methods , Microbial Viability/drug effects , Phylogeny , Rhizosphere , Soil Microbiology
4.
New Phytol ; 226(4): 1088-1103, 2020 05.
Article in English | MEDLINE | ID: mdl-31711257

ABSTRACT

Exotic pathogens cause severe damage in natural populations in the absence of coevolutionary dynamics with their hosts. However, some resistance to such pathogens may occur in naive populations. The objective of this study was to investigate the genetics of this so-called 'exapted' resistance to two pathogens of Asian origin (Erysiphe alphitoides and Phytophthora cinnamomi) in European oak. Host-pathogen compatibility was assessed by recording infection success and pathogen growth in a full-sib family of Quercus robur under controlled and natural conditions. Two high-resolution genetic maps anchored on the reference genome were used to study the genetic architecture of resistance and to identify positional candidate genes. Two genomic regions, each containing six strong and stable quantitative trait loci (QTLs) accounting for 12-19% of the phenotypic variation, were mainly associated with E. alphitoides infection. Candidate genes, especially genes encoding receptor-like-kinases and galactinol synthases, were identified in these regions. The three QTLs associated with P. cinnamomi infection did not colocate with QTLs found for E. alphitoides. These findings provide evidence that exapted resistance to E. alphitoides and P. cinnamomi is present in Q. robur and suggest that the underlying molecular mechanisms involve genes encoding proteins with extracellular signaling functions.


Subject(s)
Ascomycota/pathogenicity , Disease Resistance/genetics , Phytophthora/pathogenicity , Plant Diseases/genetics , Quercus/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Quercus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...