Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948739

ABSTRACT

Vertebrate radial glia progenitors (RGPs), the principal neural stem cells, balance self-renewal and differentiation through asymmetric cell division (ACD), during which unequal inheritance of centrosomes is observed. Mechanistically, how centrosome asymmetry leads to distinct daughter cell fate remains largely unknown. Here we find that the centrosome protein Pericentriolar Material 1 (Pcm1), asymmetrically distributed at the centrosomes, regulates polarized endosome dynamics and RGP fate. In vivo time-lapse imaging and nanoscale-resolution expansion microscopy of zebrafish embryonic RGPs detect Pcm1 on Notch ligand-containing endosomes, in a complex with the polarity regulator Par-3 and dynein motor. Loss of pcm1 disrupts endosome dynamics, with clonal analysis uncovering increased neuronal production at the expense of progenitors. Pcm1 facilitates an exchange of Rab5b (early) for Rab11a (recycling) endosome markers and promotes the formation of Par-3 and dynein macromolecular complexes on recycling endosomes. Finally, in human-induced pluripotent stem cell-derived brain organoids, PCM1 shows asymmetry and co-localization with PARD3 and RAB11A in mitotic neural progenitors. Our data reveal a new mechanism by which centrosome asymmetry is conveyed by Pcm1 to polarize endosome dynamics and Notch signaling in regulating ACD and progenitor fate.

2.
Development ; 148(6)2021 03 29.
Article in English | MEDLINE | ID: mdl-33782043

ABSTRACT

Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.


Subject(s)
Circadian Clocks , Homeodomain Proteins/metabolism , Motor Neurons/metabolism , Pluripotent Stem Cells/metabolism , Benzamides/pharmacology , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Cell Differentiation , Circadian Clocks/drug effects , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation, Developmental , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Growth Differentiation Factors/pharmacology , Homeodomain Proteins/genetics , Humans , Motor Neurons/cytology , Pluripotent Stem Cells/cytology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...