Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(11)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36595314

ABSTRACT

Semiconducting piezoelectric nanowires (NWs) are promising candidates to develop highly efficient mechanical energy transducers made of biocompatible and non-critical materials. The increasing interest in mechanical energy harvesting makes the investigation of the competition between piezoelectricity, free carrier screening and depletion in semiconducting NWs essential. To date, this topic has been scarcely investigated because of the experimental challenges raised by the characterization of the direct piezoelectric effect in these nanostructures. Here we get rid of these limitations using the piezoresponse force microscopy technique in DataCube mode and measuring the effective piezoelectric coefficient through the converse piezoelectric effect. We demonstrate a sharp increase in the effective piezoelectric coefficient of vertically aligned ZnO NWs as their radius decreases. We also present a numerical model which quantitatively explains this behavior by taking into account both the dopants and the surface traps. These results have a strong impact on the characterization and optimization of mechanical energy transducers based on vertically aligned semiconducting NWs.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35335751

ABSTRACT

A randomly oriented nanowire network, also called nanonet (NN), is a nano-microstructure that is easily integrated into devices while retaining the advantages of using nanowires. This combination presents a highly developed surface, which is promising for sensing applications while drastically reducing integration costs compared to single nanowire integration. It now remains to demonstrate its effective sensing in real conditions, its selectivity and its real advantages. With this work, we studied the feasibility of gaseous acetone detection in breath by considering the effect of external parameters, such as humidity and temperature, on the device's sensitivity. Here the devices were made of ZnO NNs covered by SnO2 and integrated on top of microhotplates for the fine and quick control of sensing temperature with low energy consumption. The prime result is that, after a maturation period of about 15 h, the devices are sensitive to acetone concentration as low as 2 ppm of acetone at 370 °C in an alternating dry and wet (50% of relative humidity) atmosphere, even after 90 h of experiments. While still away from breath humidity conditions, which is around 90% RH, the sensor response observed at 50% RH to 2 ppm of acetone shows promising results, especially since a temperature scan allows for ethanol's distinguishment.

3.
Nanomaterials (Basel) ; 11(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917136

ABSTRACT

ZnO nanowires are excellent candidates for energy harvesters, mechanical sensors, piezotronic and piezophototronic devices. The key parameters governing the general performance of the integrated devices include the dimensions of the ZnO nanowires used, their doping level, and surface trap density. However, although the method used to grow these nanowires has a strong impact on these parameters, its influence on the performance of the devices has been neither elucidated nor optimized yet. In this paper, we implement numerical simulations based on the finite element method combining the mechanical, piezoelectric, and semiconducting characteristic of the devices to reveal the influence of the growth method of ZnO nanowires. The electrical response of vertically integrated piezoelectric nanogenerators (VING) based on ZnO nanowire arrays operating in compression mode is investigated in detail. The properties of ZnO nanowires grown by the most widely used methods are taken into account on the basis of a thorough and comprehensive analysis of the experimental data found in the literature. Our results show that the performance of VING devices should be drastically affected by growth method. Important optimization guidelines are found. In particular, the optimal nanowire radius that would lead to best device performance is deduced for each growth method.

4.
Nanomaterials (Basel) ; 10(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942692

ABSTRACT

Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported. The biofunctionalized devices were analyzed by atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM), proving that TBA-15 probes were properly grafted on the surface of the devices, and by means of epifluorescence microscopy it was possible to demonstrate that the UV-assisted GOPS-based functionalization notably improves the homogeneity of the surface DNA distribution. Later, the electrical characteristics of 80 devices were analyzed before and after the biofunctionalization process, indicating that the results are highly dependent on the experimental protocol. We found that the TBA-15 hybridization capacity with its complementary strand is time dependent and that the transfer characteristics of the Si NN-FETs obtained after the TBA-15 probe grafting are also time dependent. These results help to elucidate and define the experimental precautions that must be taken into account to fabricate reproducible devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...