Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 35(9): 3722-3730, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181674

ABSTRACT

Real-time manipulation of light in a diffractive optical element made with an azomaterial, through the light-induced reconfiguration of its surface based on mass transport, is an ambitious goal that may enable new applications and technologies. The speed and the control over photopatterning/reconfiguration of such devices are critically dependent on the photoresponsiveness of the material to the structuring light pattern and on the required extent of mass transport. In this regard, the higher the refractive index (RI) of the optical medium, the lower the total thickness and inscription time can be. In this work, we explore a flexible design of photopatternable azomaterials based on hierarchically ordered supramolecular interactions, used to construct dendrimer-like structures by mixing specially designed sulfur-rich, high-refractive-index photoactive and photopassive components in solution. We demonstrate that thioglycolic-type carboxylic acid groups can be selectively used as part of a supramolecular synthon based on hydrogen bonding or readily converted to carboxylate and participate in a Zn(II)-carboxylate interaction to modify the structure of the material and fine-tune the quality and efficiency of photoinduced mass transport. Compared with a conventional azopolymer, we demonstrate that it is possible to fabricate high-quality, thinner flat diffractive optical elements to reach the desired diffraction efficiency by increasing the RI of the material, achieved by maximizing the content of high molar refraction groups in the chemical structure of the monomers.

2.
J Phys Chem B ; 120(43): 11317-11322, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27726372

ABSTRACT

Holographic storage is one of the most important applications in the field of optics, especially for recording and retrieving data, and information storage by interference patterns in photosensitive materials are no exception in this regard. In this work, we give evidence that holograms recorded by interference of two coherent laser beams in azo dye doped polymer films can be controlled by a third incoherent assisting laser beam. We show that light diffraction can be increased or decreased by an assisting beam depending on the respective orientation of the polarizations of the recording and the assisting beams. We also found that photomanipulation of polarization holograms, prepared by polarization modulation, does not depend on the polarization of the assisting beam, whereas, photomanipulation of holograms prepared by intensity modulation strongly depends on the polarization of the assisting beam. Photoselection is shown to play a major role in the photoassisted diffraction process.

SELECTION OF CITATIONS
SEARCH DETAIL
...