Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prev Nutr Food Sci ; 29(1): 47-62, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38576886

ABSTRACT

Here we test a method of incorporating of plant extracts into popular snack foods to help control diabetes. Since some fresh vegetables contain antidiabetic compounds, ultrasound-assisted extraction was used to optimize their extraction of from spring onions, bunching onions, and celery for later incorporation into crackers. We compared various concentrations of ethanol used during extraction, after which they were exposed to an ultrasound processor whose amplitude and sonication time were also varied. The optimal extraction conditions were found to be an ethanol concentration of 44.08%, an amplitude of 80%, and a sonication time of 30 min. This resulted in the highest level of α-glucosidase inhibitory activity (i.e., 1,449.73 mmol ACE/g) and the highest extraction yield (i.e., 24.16%). The extract produced from these optimum conditions was then used as a constituent component of crackers at 0.625%, 1.25%, or 2.5% w/w. These biscuits were then produced at baking temperatures of 140°C, 150°C, or 160°C. We then measured the physical characteristics and bioactivities of sample biscuits from each treatment. We found that biscuits containing 2.5% vegetable combination extract and baked at 140°C had the highest total phenolic content, the strongest antioxidant performance, and showed the most substantial antidiabetic and antiobesity effects. Here we establish conditions for the effective extraction of antidiabetic functional ingredients via ultrasound from green leafy vegetables. We also provide a method of using these ingredients to prepare crackers with the aim of developing a functional antidiabetic snack food.

2.
Crit Rev Microbiol ; 46(5): 578-599, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32954887

ABSTRACT

Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/microbiology , Drug Resistance, Bacterial , Animals , Anti-Bacterial Agents/history , Bacteria/genetics , Bacterial Infections/drug therapy , Bacterial Infections/history , Gene Transfer, Horizontal , History, 20th Century , History, 21st Century , Humans , Plasmids/genetics , Plasmids/metabolism
3.
Int J Biol Macromol ; 163: 1498-1517, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32781120

ABSTRACT

Fibrinolytic enzymes are proteases responsible for cleavage of fibrin mesh in thrombus clots, which are the primary causative agents in cardiovascular diseases. Developing safe, effective and cheap thrombolytic agents are important for prevention and cure of thrombosis. Although a wide variety of sources have been discovered for fibrinolytic enzymes, only few of them have been employed in clinical and therapeutic applications due to the drawbacks such as high cost of production, low stability of enzyme or therapeutic side effects. However, the discovery of new fibrinolytic enzymes requires complex purification stages and characterization, which gives an insight into their diverse modes of action. Post-discovery, approaches such as a) statistical optimization for fermentative bioprocessing and b) genetic engineering are advantageous in providing economic viability by finding simple and cost-effective medium, strain development with sufficient nutrient supplements for stable and high-level production of recombinant enzyme. This review provides a comprehensive understanding of different sources, purification techniques, production through genetic engineering approaches and statistical optimization of fermentation parameters as proteases have a wide variety of industrial and biotechnological applications making 60% of total enzyme market worldwide. New strategies targeting increased enzyme yields, non-denaturing environments, improved stability, enzyme activity and strain improvement have been discussed.


Subject(s)
Fibrinolytic Agents/chemistry , Animals , Fermentation , Fermented Foods , Fibrin/chemistry , Genetic Engineering/methods , Humans , Peptide Hydrolases/chemistry , Thrombosis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...