Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Ind Eng Chem Res ; 56(45): 13423-13433, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29170600

ABSTRACT

ZnCl2 hydrate, the main molten salt used in biomass conversion, combined with low concentration HCl is an excellent solvent for the dissolution and hydrolysis of the carbohydrates present in lignocellulosic biomass. The most recalcitrant carbohydrate, cellulose, is dissolved in a residence time less than 1 h under mild conditions without significant degradation. This technology is referred to as BIOeCON-solvent technology. Separation of the sugars from the solution is the main challenge. The earlier conclusion regarding the potential of zeolite beta for selective adsorption has been used as the basis of a scale-up study. The technology of choice is continuous chromatographic separation (e.g., simulated moving bed, SMB). The sugar monomers are separated from the sugar oligomers, allowing the production of monosugars at high yield, using water as an eluent. Results of a pilot plant study are presented showing a stable operation at high selectivity. Several process designs are discussed, and the techno-economic performance of the BIOeCON-solvent technology is demonstrated by comparison with the state-of-the-art technology of NREL (National Renewable Energy Laboratory), which is based on enzymatic conversion of cellulose. It is concluded that the BIOeCON-solvent technology is technically and economically viable and is competitive to the NREL process. Because the BIOeCON-solvent process is in an early stage of development and far from fully optimized, it has the potential to outperform the existing processes.

2.
Nanoscale ; 9(30): 10802-10810, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28726943

ABSTRACT

We tailored the size distribution of Pt nanoparticles (NPs) on graphene nanoplatelets at a given metal loading by using low-temperature atomic layer deposition carried out in a fluidized bed reactor operated at atmospheric pressure. The Pt NPs deposited at low temperature (100 °C) after 10 cycles were more active and stable towards the propene oxidation reaction than their high-temperature counterparts. Crucially, the gap in the catalytic performance was retained even after prolonged periods of time (>24 hours) at reaction temperatures as high as 450 °C. After exposure to such harsh conditions the Pt NPs deposited at 100 °C still retained a size distribution that is narrower than the one of the as-synthesized NPs obtained at 250 °C. The difference in performance correlated with the difference in the number of facet sites as estimated after the catalytic test. Our approach provides not only a viable route for the scalable synthesis of stable supported Pt NPs with tailored size distributions but also a tool for studying the structure-function relationship.

3.
J Phys Chem Lett ; 8(5): 975-983, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28178779

ABSTRACT

We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment.

6.
Chem Sci ; 7(9): 5833-5837, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-30034723

ABSTRACT

Hydrogen peroxide synthesis from hydrogen and oxygen in the gas phase is postulated to be a key reaction step in the gas phase epoxidation of propene using gold-titanium silicate catalysts. During this process H2O2 is consumed in a secondary step to oxidise an organic molecule so is typically not observed as a reaction product. We demonstrate that using AuPd nanoparticles, which are known to have high H2O2 synthesis rates in the liquid phase, it is possible to not only oxidise organic molecules in the gas phase but to detect H2O2 for the first time as a reaction product in both a fixed bed reactor and a pulsed Temporal Analysis of Products (TAP) reactor without stabilisers present in the gas feed. This observation opens up possibility of synthesising H2O2 directly using a gas phase reaction.

7.
Nat Chem ; 7(12): 1028-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26587720

ABSTRACT

The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.

8.
Chemistry ; 18(49): 15735-45, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23150452

ABSTRACT

The partial oxidation of methane to methanol presents one of the most challenging targets in catalysis. Although this is the focus of much research, until recently, approaches had proceeded at low catalytic rates (<10 h(-1)), not resulted in a closed catalytic cycle, or were unable to produce methanol with a reasonable selectivity. Recent research has demonstrated, however, that a system composed of an iron- and copper-containing zeolite is able to catalytically convert methane to methanol with turnover frequencies (TOFs) of over 14,000 h(-1) by using H(2)O(2) as terminal oxidant. However, the precise roles of the catalyst and the full mechanistic cycle remain unclear. We hereby report a systematic study of the kinetic parameters and mechanistic features of the process, and present a reaction network consisting of the activation of methane, the formation of an activated hydroperoxy species, and the by-production of hydroxyl radicals. The catalytic system in question results in a low-energy methane activation route, and allows selective C(1)-oxidation to proceed under intrinsically mild reaction conditions.

10.
Phys Chem Chem Phys ; 13(4): 1345-55, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21152664

ABSTRACT

The rate of cyclohexane photo-catalytic oxidation to cyclohexanone over anatase TiO(2) was studied at temperatures between 23 and 60 °C by in situ ATR-FTIR spectroscopy, and the kinetic parameters were estimated using a microkinetic model. At low temperatures, surface cyclohexanone formation is limited by cyclohexane adsorption due to unfavorable desorption of H(2)O, rather than previously proposed slow desorption of the product cyclohexanone. Up to 50 °C, the activation energy for photocatalytic cyclohexanone formation is zero, while carboxylates are formed with an activation energy of 18.4 ± 3.3 kJ mol(-1). Above 50 °C, significant (thermal) oxidation of cyclohexanone contributes to carboxylate formation. The irreversibly adsorbed carboxylates lead to deactivation of the catalyst, and are most likely the predominant cause of the non-Arrhenius behavior at relatively high reaction temperatures, rather than cyclohexane adsorption limitations. The results imply that elevating the reaction temperature of photocatalytic cyclohexane oxidation reduces selectivity, and is not a means to suppress catalyst deactivation.

11.
Phys Chem Chem Phys ; 12(10): 2488-92, 2010 Mar 14.
Article in English | MEDLINE | ID: mdl-20449363

ABSTRACT

The direct synthesis of hydrogen peroxide from H(2) and O(2) has been studied using a high activity AuPd/TiO(2) catalyst. In particular, the effect of variation in the reaction conditions on the productivity of hydrogen peroxide formation is investigated in detail. The effect of H(2)/O(2) molar ratio, temperature, total pressure and solvent composition has been studied and optimised conditions identified. In addition, the effect of carrying out the synthesis reaction in the presence of hydrogen peroxide is investigated and the competing reactions of hydrogen peroxide formation, decomposition and hydrogenation are discussed and optimal operating conditions are identified.


Subject(s)
Gold/chemistry , Hydrogen Peroxide/chemical synthesis , Palladium/chemistry , Titanium/chemistry , Catalysis , Hydrogen/chemistry , Hydrogen Peroxide/chemistry , Oxygen/chemistry
12.
Phys Chem Chem Phys ; 12(11): 2744-50, 2010 Mar 20.
Article in English | MEDLINE | ID: mdl-20200753

ABSTRACT

A systematic study is presented on the effect of crystallite size of Anatase (Hombikat, Sachtleben), varied by calcination at different temperatures up to 800 degrees C, on photocatalytic activity in cyclohexane selective oxidation. Two different reactors were used to test the materials: a top illumination reactor and an in situ ATR-FTIR cell. Properties such as crystallinity and associated availability of holes and electrons for surface reactions, as well as the amount of surface OH-groups, are shown to have a significant influence on TiO(2) activity, (surface) selectivity, and stability. Upon increasing the crystallite size, productivity (g(-1)(catalyst)) decreases, while (i) the TOF (moles of cyclohexanone formed per minute per OH-site), (ii) the rate of cyclohexanone desorption, (iii) catalytic site stability, and (iv) the cyclohexanol/cyclohexanone ratio increase. The results are discussed on the basis of a reaction scheme, and a simple reaction rate equation.

14.
ChemSusChem ; 2(6): 575-80, 2009.
Article in English | MEDLINE | ID: mdl-19350609

ABSTRACT

The effect of halide and acid addition on the direct synthesis of hydrogen peroxide is studied for magnesium oxide- and carbon-supported bimetallic gold-palladium catalysts. The addition of acids decreases the hydrogenation/decomposition of hydrogen peroxide, and the effect is particularly pronounced for the magnesium oxide-supported catalysts whilst for carbon-supported catalysts the pH requires close control to optimize hydrogen peroxide synthesis. The addition of bromide leads to a marked decrease in the hydrogenation/decomposition of hydrogen peroxide with either catalyst. These effects are discussed in terms of the structure of the gold-palladium alloy nanoparticles and the isoelectric point of the support. We conclude that with the highly active carbon-supported gold-palladium catalysts these additives are not required and that therefore this system presents the potential for the direct synthesis of hydrogen peroxide to be operated using green process technology.


Subject(s)
Acids/chemistry , Bromides/chemistry , Green Chemistry Technology/methods , Hydrogen Peroxide/chemical synthesis , Catalysis , Gold , Palladium
16.
Phys Chem Chem Phys ; 9(34): 4822-30, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17712461

ABSTRACT

In situ pH and Attenuated Total Reflection (ATR) infrared techniques have been successfully applied in order to gain insights into the dissolution process connected to mesopore formation occurring upon alkaline treatment of ZSM-5 zeolites. Online pH measurements reveal a similar consumption of OH(-) ions in the initial stage of the reaction independent of the Si/Al ratio of the zeolite. In view of the greatly different mesoporosity development, the extraction of polymeric silica entities is anticipated, its structure depending on the framework Si/Al ratio. In agreement, ATR-IR experiments have confirmed dissolution of polymeric silicon-containing species that in the course of the alkaline treatment disintegrate into smaller entities. A direct relation between the type of porosity developed and the process of silicon extraction as measured in the liquid phase cannot be drawn.


Subject(s)
Photometry/methods , Silicon Dioxide/chemistry , Silicon Dioxide/isolation & purification , Spectrophotometry, Infrared/methods , Zeolites/chemistry , Hydrogen-Ion Concentration , Porosity
17.
Appl Spectrosc ; 61(5): 470-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17555615

ABSTRACT

This study evaluates the applicability of fiber-optic-based Raman probes for on-line reaction monitoring of high-pressure catalytic hydrogenation reactions in batch autoclaves. First, based on trends in the strong intensity of the 945 cm(-1) C-O-C vibration of 1,3-dioxolane, the effect of various experimental parameters on sensitivity was evaluated and can be summarized as follows: (1) above 500 rpm a linear increase in stirring speed induces a linear decrease in Raman intensity; (2) a linear increase in hydrogen pressure also leads to a linear decrease of the Raman signal; (3) linear temperature elevation exponentially decreases the Raman intensity; and (4) increasing the catalyst particle concentration results in a steep nonlinear decrease of the Raman signal. Light scattering by gas bubbles, or combined scattering and absorption by (black) catalyst particles, reducing the amount of light collected by the optical fiber probe, explain the observed experimental trends. Second, the sensitivity of Raman spectroscopy was directly compared with attenuated total reflection-Fourier transform infrared (ATR-FT-IR) spectroscopy in the analysis of three different hydrogenation reactions over a Cu-ZnO catalyst. From the applied target molecules, diethyl maleate hydrogenation could be very well analyzed by Raman spectroscopy due to the high Raman scattering efficiency of the C=C bond, while for analysis of the hydrogenation of gamma-butyrolactone or 1-butanal, ATR-FT-IR is the technique of choice.

18.
J Am Chem Soc ; 129(2): 355-60, 2007 Jan 17.
Article in English | MEDLINE | ID: mdl-17212415

ABSTRACT

A 2 orders of magnitude gas transport improvement in a medium pore ZSM-5 zeolite has been achieved upon introduction of intracrystalline mesoporosity in gradient-free crystals by desilication post-treatment in alkaline medium.


Subject(s)
Silicates/chemistry , Zeolites/chemistry , Aluminum/chemistry , Crystallization , Diffusion , Oxygen/chemistry , Particle Size , Porosity , Surface Properties , Time Factors
19.
J Phys Chem B ; 110(41): 20369-78, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034220

ABSTRACT

The effects of alkaline treatment on the mesoporosity development and iron speciation in Fe-MFI zeolites have been investigated. To this end, a variety of samples derived from different synthetic routes and having distinct Si/Al ratios and Fe content were treated in NaOH solutions and characterized by N2 adsorption, SEM, TEM, UV/vis spectroscopy, and EPR. The alkaline treatment induces a significant intracrystalline mesoporosity development by framework silicon extraction and promotes disintegration of oligomeric iron species. Iron in framework positions has shown to provoke mesopore formation, whereas nonframework iron species suppresses silicon leaching and lowers the extent of extra porosity.

20.
Chemistry ; 12(2): 620-8, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16175641

ABSTRACT

A series of TiO2-TUD-1 samples was synthesized with a variable Ti loading in the range Si/Ti = 100, 20, 2.5, and 1.6, by using a one-pot surfactant-free procedure. The materials obtained were characterized by elemental analysis; X-ray diffraction (XRD); N2 sorption measurements; high-resolution TEM (HR-TEM); 29Si NMR, UV-visible and Raman spectroscopy. As a function of increasing metal loading either isolated Ti atoms, or (above a Ti loading of approximately 2.5 wt- %) combinations of isolated Ti atoms and anatase (TiO2) nanoparticles were obtained; both were incorporated in the highly porous siliceous matrix. The photocatalytic performance of these materials was tested by studying the propane oxidation process following irradiation at lambda = 365 nm, selectively activating the anatase nanoparticles. In comparison to commercial anatase powder, TiO2 nanoparticles in TUD-1 showed high photochemical selectivity towards acetone, the sample with a Si/Ti ratio of 1.6 being the most selective. Size and confinement effects are consistent with the difference in performance of the TUD-1 materials and TiO2, limiting the number of electron transfers available for each propane molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...