Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Immunotargets Ther ; 13: 319-333, 2024.
Article in English | MEDLINE | ID: mdl-38948503

ABSTRACT

Purpose: Medulloblastoma (MB) is the most prevalent paediatric brain tumour. Despite improvements in patient survival with current treatment strategies, the quality of life of these patients remains poor owing to the sequelae and relapse risk. An alternative, or, in addition to the current standard treatment, could be considered immunotherapy, such as Natural Killer cells (NK). NK cells are cytotoxic innate lymphoid cells that play a major role in cancer immunosurveillance. To date, the mechanism of cytotoxicity of NK cells, especially regarding the steps of adhesion, conjugation, cytotoxic granule polarisation in the cell contact area, perforin and granzyme release in two and three dimensions, and therapeutic efficacy in vivo have not been precisely described. Materials and Methods: Each step of NK cytotoxicity against the three MB cell lines was explored using confocal microscopy for conjugation, Elispot for degranulation, flow cytometry, and luminescence assays for target cell necrosis and lysis and mediators released by cytokine array, and then confirmed in a 3D spheroid model. Medulloblastoma-xenografted mice were treated with NK cells. Their persistence was evaluated by flow cytometry, and their efficacy in tumour growth and survival was determined. In addition, their effects on the tumour transcriptome were evaluated. Results: NK cells showed variable affinities for conjugation with MB target cells depending on their subgroup and cytokine activation. Chemokines secreted during NK and MB cell co-culture are mainly associated with angiogenesis and immune cell recruitment. NK cell cytotoxicity induces MB cell death in both 2D and 3D co-culture models. NK cells initiated an inflammatory response in a human MB murine model by modulating the MB cell transcriptome. Conclusion: Our study confirmed that NK cells possess both in vitro and in vivo cytotoxic activity against MB cells and are of interest for the development of immunotherapy.

2.
Ann Rheum Dis ; 83(3): 312-323, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38049981

ABSTRACT

OBJECTIVES: Alterations in tryptophan (Trp) metabolism have been reported in inflammatory diseases, including rheumatoid arthritis (RA). However, understanding whether these alterations participate in RA development and can be considered putative therapeutic targets remains undetermined.In this study, we combined quantitative Trp metabolomics in the serum from patients with RA and corrective administration of a recombinant enzyme in experimental arthritis to address this question. METHODS: Targeted quantitative Trp metabolomics was performed on the serum from 574 previously untreated patients with RA from the ESPOIR (Etude et Suivi des POlyarthrites Indifférenciées Récentes) cohort and 98 healthy subjects. A validation cohort involved 69 established patients with RA. Dosages were also done on the serum of collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) mice and controls. A proof-of-concept study evaluating the therapeutic potency of targeting the kynurenine pathway was performed in the CAIA model. RESULTS: Differential analysis revealed dramatic changes in Trp metabolite levels in patients with RA compared with healthy controls. Decreased levels of kynurenic (KYNA) and xanthurenic (XANA) acids and indole derivatives, as well as an increased level of quinolinic acid (QUIN), were found in the serum of patients with RA. They correlated positively with disease severity (assessed by both circulating biomarkers and disease activity scores) and negatively with quality-of-life scores. Similar profiles of kynurenine pathway metabolites were observed in the CAIA and CIA models. From a mechanistic perspective, we demonstrated that QUIN favours human fibroblast-like synoviocyte proliferation and affected their cellular metabolism, through inducing both mitochondrial respiration and glycolysis. Finally, systemic administration of the recombinant enzyme aminoadipate aminotransferase, responsible for the generation of XANA and KYNA, was protective in the CAIA model. CONCLUSIONS: Altogether, our preclinical and clinical data indicate that alterations in the Trp metabolism play an active role in the pathogenesis of RA and could be considered as a new therapeutic avenue.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Humans , Animals , Mice , Tryptophan/therapeutic use , Kynurenine/therapeutic use , Biomarkers , Arthritis, Experimental/pathology
3.
Gut ; 72(7): 1296-1307, 2023 07.
Article in English | MEDLINE | ID: mdl-36270778

ABSTRACT

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Tryptophan/metabolism , Inflammatory Bowel Diseases/drug therapy , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Intestines , Inflammation
4.
J Biophotonics ; 16(2): e202200200, 2023 02.
Article in English | MEDLINE | ID: mdl-36112612

ABSTRACT

Crohn's disease (CD) and spondyloarthritis (SpA) are two inflammatory diseases sharing many common features (genetic polymorphism, armamentarium). Both diseases lack diagnostic markers of certainty. While the diagnosis of CD is made by a combination of clinical, and biological criteria, the diagnosis of SpA may take several years to be confirmed. Based on the hypothesis that CD and SpA alter the biochemical profile of plasma, the objective of this study was to evaluate the analytical capability of Fourier transform infrared spectroscopy (FTIR) in identifying spectral biomarkers. Plasma from 104 patients was analyzed. After data processing of the spectra by Extended Multiplicative Signal Correction and linear discriminant analysis, we demonstrated that it was possible to distinguish CD and SpA from controls with an accuracy of 97% and 85% respectively. Spectral differences were mainly associated with proteins and lipids. This study showed that FTIR analysis is efficient to identify plasma biosignatures specific to CD or SpA.


Subject(s)
Crohn Disease , Spondylarthritis , Humans , Crohn Disease/diagnosis , Spectroscopy, Fourier Transform Infrared/methods , Spondylarthritis/diagnosis , Spondylarthritis/complications , Biomarkers
5.
Clin Transl Med ; 12(10): e1032, 2022 10.
Article in English | MEDLINE | ID: mdl-36245291

ABSTRACT

Psoriasis is a chronic inflammatory disorder affecting skin and joints that results from immunological dysfunction such as enhanced IL-23 induced Th-17 differentiation. IkappaB-Zeta (IκBζ) is an atypical transcriptional factor of the IκB protein family since, contrary to the other family members, it positively regulates NF-κB pathway by being exclusively localized into the nucleus. IκBζ deficiency reduces visible manifestations of experimental psoriasis by diminishing expression of psoriasis-associated genes. It is thus tempting to consider IκBζ as a potential therapeutic target for psoriasis as well as for other IL23/IL17-mediated inflammatory diseases. In this review, we will discuss the regulation of expression of NFKBIZ and its protein IκBζ, its downstream targets, its involvement in pathogenesis of multiple disorders with emphasis on psoriasis and evidences supporting that inhibition of IκBζ may be a promising alternative to current therapeutic managements of psoriasis.


Subject(s)
NF-kappa B , Psoriasis , Humans , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Inflammation/genetics , Inflammation/metabolism , Interleukin-23 , NF-kappa B/genetics , NF-kappa B/metabolism , Psoriasis/genetics , Psoriasis/metabolism
6.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35886959

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.


Subject(s)
Exposome , Inflammatory Bowel Diseases , Animals , Epigenome , Inflammation/genetics , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/genetics , Models, Animal
7.
Molecules ; 27(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35335304

ABSTRACT

Bryophytes produce rare and bioactive compounds with a broad range of therapeutic potential, and many species are reported in ethnomedicinal uses. However, only a few studies have investigated their potential as natural anti-inflammatory drug candidate compounds. The present study investigates the anti-inflammatory effects of thirty-two species of bryophytes, including mosses and liverworts, on Raw 264.7 murine macrophages stimulated with lipopolysaccharide (LPS) or recombinant human peroxiredoxin (hPrx1). The 70% ethanol extracts of bryophytes were screened for their potential to reduce the production of nitric oxide (NO), an important pro-inflammatory mediator. Among the analyzed extracts, two moss species significantly inhibited LPS-induced NO production without cytotoxic effects. The bioactive extracts of Dicranum majus and Thuidium delicatulum inhibited NO production in a concentration-dependent manner with IC50 values of 1.04 and 1.54 µg/mL, respectively. The crude 70% ethanol and ethyl acetate extracts were then partitioned with different solvents in increasing order of polarity (n-hexane, diethyl ether, chloroform, ethyl acetate, and n-butanol). The fractions were screened for their inhibitory effects on NO production stimulated with LPS at 1 ng/mL or 10 ng/mL. The NO production levels were significantly affected by the fractions of decreasing polarity such as n-hexane and diethyl ether ones. Therefore, the potential of these extracts to inhibit the LPS-induced NO pathway suggests their effective properties in attenuating inflammation and could represent a perspective for the development of innovative therapeutic agents.


Subject(s)
Bryophyta , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Humans , Lipopolysaccharides/pharmacology , Macrophages , Mice , Plant Extracts/metabolism , Plant Extracts/pharmacology
8.
Front Nutr ; 8: 758518, 2021.
Article in English | MEDLINE | ID: mdl-34869528

ABSTRACT

Nutrition appears to be an important environmental factor involved in the onset of inflammatory bowel diseases (IBD) through yet poorly understood biological mechanisms. Most studies focused on fat content in high caloric diets, while refined sugars represent up to 40% of caloric intake within industrialized countries and contribute to the growing epidemics of inflammatory diseases. Herein we aim to better understand the impact of a high-fat-high-sucrose diet on intestinal homeostasis in healthy conditions and the subsequent colitis risk. We investigated the early events and the potential reversibility of high caloric diet-induced damage in mice before experimental colitis. C57BL/6 mice were fed with a high-fat or high-fat high-sucrose or control diet before experimental colitis. In healthy mice, a high-fat high-sucrose diet induces a pre-IBD state characterized by gut microbiota dysbiosis with a total depletion of bacteria belonging to Barnesiella that is associated with subclinical endoscopic lesions. An overall down-regulation of the colonic transcriptome converged with broadly decreased immune cell populations in the mesenteric lymph nodes leading to the inability to respond to tissue injury. Such in-vivo effects on microbiome and transcriptome were partially restored when returning to normal chow. Long-term consumption of diet enriched in sucrose and fat predisposes mice to colitis. This enhanced risk is preceded by gut microbiota dysbiosis and transcriptional reprogramming of colonic genes related to IBD. Importantly, diet-induced transcriptome and microbiome disturbances are partially reversible after switching back to normal chow with persistent sequelae that may contribute to IBD predisposition in the general population.

10.
Front Cell Dev Biol ; 9: 627153, 2021.
Article in English | MEDLINE | ID: mdl-33869176

ABSTRACT

Long bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice. We first highlighted the dual bone phenotype of PPARγ null mice: one the one hand, the increased bone formation and subsequent trabecularization extending in the long bone diaphysis, due to the well-known impact of PPARγ deficiency on osteoblasts formation and activity; on the other hand, an increased osteoclastogenesis in the cortical bone. We then further explored the cause of this unexpected increased osteoclastogenesis using two independent models of lipoatrophy, which recapitulated this phenotype. This demonstrates that hyperosteoclastogenesis is not intrinsically linked to PPARγ deficiency, but is a consequence of the total lipodystrophy. We further showed that adiponectin, a cytokine produced by adipocytes and mesenchymal stromal cells is a potent inhibitor of osteoclastogenesis in vitro and in vivo. Moreover, pharmacological activation of adiponectin receptors by the synthetic agonist AdipoRon inhibited mature osteoclast activity both in mouse and human cells by blocking podosome formation through AMPK activation. Finally, we demonstrated that AdipoRon treatment blocks bone erosion in vivo in a murine model of inflammatory bone loss, providing potential new approaches to treat osteoporosis.

11.
Mucosal Immunol ; 14(3): 585-593, 2021 05.
Article in English | MEDLINE | ID: mdl-33106586

ABSTRACT

Type 2 innate lymphoid cells (ILC2s) play a critical role early in the response to infection by helminths and in the development of allergic reactions. ILC2s are also involved in the physiologic regulation of adipose tissue and its metabolic response to cold shock. We find that the metabolic sensor peroxisome proliferator-activated receptor gamma (PPARγ) is highly expressed in ILC2s of the lung and adipose tissue and increases responsiveness to IL-33. In turn, activation of ILC2 by IL-33 leads to increased expression of PPARγ, a prerequisite for proliferation and expression of the effector cytokines IL-5 and IL-13. In contrast, pharmacological inhibition of PPARγ leads to decreased expression of CD36 and fatty acid uptake, a necessary source of energy for ILC2s and of potential ligands for PPARγ. As a consequence, treatment of mice with a PPARγ antagonist reduces the severity of an ILC2-dependent acute airway inflammation. Together, our results demonstrate the critical role of the metabolic sensor PPARγ for the functions of ILC2s.


Subject(s)
Adipose Tissue/metabolism , Interleukin-33/metabolism , Lung/metabolism , Lymphocytes/immunology , PPAR gamma/metabolism , Pneumonia/immunology , Respiratory Hypersensitivity/immunology , Adipose Tissue/immunology , Animals , CD36 Antigens/metabolism , Cells, Cultured , Cytokines/metabolism , Down-Regulation , Humans , Lung/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR gamma/genetics , Th2 Cells/immunology
14.
Ann Rheum Dis ; 79(9): 1132-1138, 2020 09.
Article in English | MEDLINE | ID: mdl-32719044

ABSTRACT

Secukinumab, ixekizumab and brodalumab are monoclonal antibody therapies that inhibit interleukin (IL)-17 activity and are widely used for the treatment of psoriasis, psoriatic arthritis and ankylosing spondylitis. The promising efficacy results in dermatology and rheumatology prompted the evaluation of these drugs in Crohn's disease and ulcerative colitis, but the onset of paradoxical events (disease exacerbation after treatment with a theoretically curative drug) prevented their approval in patients with inflammatory bowel diseases (IBDs). To date, the pathophysiological mechanisms underlying these paradoxical effects are not well defined, and there are no clear guidelines for the management of patients with disease flare or new IBD onset after anti-IL-17 drug therapy. In this review, we summarise the literature on putative mechanisms, the clinical digestive effects after therapy with IL-17 inhibitors and provide guidance for the management of these paradoxical effects in clinical practice.


Subject(s)
Antirheumatic Agents/adverse effects , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Inflammatory Bowel Diseases/chemically induced , Interleukin-17/antagonists & inhibitors , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Arthritis, Psoriatic/drug therapy , Female , Humans , Male , Middle Aged , Psoriasis/drug therapy , Randomized Controlled Trials as Topic , Spondylitis, Ankylosing/drug therapy , Treatment Outcome
15.
United European Gastroenterol J ; 7(8): 1008-1032, 2019 10.
Article in English | MEDLINE | ID: mdl-31662859

ABSTRACT

Introduction: Inflammatory bowel diseases (IBDs) and chronic rheumatic diseases (CRDs) are systemic chronic disorders sharing common genetic, immune and environmental factors. About half of patients with IBD develop rheumatic ailments and microscopic intestinal inflammation is present in up to half of CRD patients. IBD and CRD patients also share a common therapeutic armamentarium. Disequilibrium in the complex realm of microbes (known as dysbiosis) that closely interact with the gut mucosal immune system has been associated with both IBD and CRD (spondyloarthritis and rheumatoid arthritis). Whether dysbiosis represents an epiphenomenon or a prodromal feature remains to be determined. Methods: In an attempt to further investigate whether specific gut dysbiosis may be the missing link between IBD and CRD in patients developing both diseases, we performed here a systematic literature review focusing on studies looking at bacterial microbiota in CRD and/or IBD patients. Results: We included 80 studies, with a total of 3799 IBD patients without arthritis, 1084 CRD patients without IBD, 132 IBD patients with arthropathy manifestations and 12 spondyloarthritis patients with IBD history. Overall, this systematic review indicates that an increase in Bifidobacterium, Staphylococcus, Enterococcus, Lactobacillus, Pseudomonas, Klebsiella and Proteus genera, as well as a decrease in Faecalibacterium, Roseburia genera and species belonging to Verrucomicrobia and Fusobacteria phyla are common features in IBD and CRD patients, whereas dozens of bacterial species are specific features of CRD and IBD. Conclusion: Further work is needed to understand the functions of bacteria and of their metabolites but also to characterize fungi and viruses that are commonly found in these patients.


Subject(s)
Gastrointestinal Microbiome/genetics , Inflammatory Bowel Diseases/microbiology , Intestines/microbiology , Microbiota/genetics , Rheumatic Diseases/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Chronic Disease , Dysbiosis/complications , Female , Humans , Inflammation/complications , Intestinal Mucosa/immunology , Intestines/pathology , Male , Microbiota/immunology , Middle Aged , Young Adult
16.
Front Immunol ; 9: 2573, 2018.
Article in English | MEDLINE | ID: mdl-30483254

ABSTRACT

Adult hematopoiesis takes place in the perivascular zone of the bone cavity, where endothelial cells, mesenchymal stromal/stem cells and their derivatives such as osteoblasts are key components of bone marrow (BM) niches. Defining the contribution of BM adipocytes to the hematopoietic stem cell niche remains controversial. While an excess of medullar adiposity is generally considered deleterious for hematopoiesis, an active role for adipocytes in shaping the niche has also been proposed. We thus investigated the consequences of total adipocyte deletion, including in the BM niche, on adult hematopoiesis using mice carrying a constitutive deletion of the gene coding for the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ). We show that PpargΔ/Δ lipodystrophic mice exhibit severe extramedullary hematopoiesis (EMH), which we found to be non-cell autonomous, as it is reproduced when wild-type donor BM cells are transferred into PpargΔ/Δ recipients. This phenotype is not due to a specific alteration linked to Pparg deletion, such as chronic inflammation, since it is also found in AZIPtg/+ mice, another lipodystrophic mouse model with normal PPARγ expression, that display only very moderate levels of inflammation. In both models, the lack of adipocytes alters subpopulations of both myeloid and lymphoid cells. The CXCL12/CXCR4 axis in the BM is also dysregulated in an adipocyte deprived environment supporting the hypothesis that adipocytes are required for normal hematopoietic stem cell mobilization or retention. Altogether, these data suggest an important role for adipocytes, and possibly for the molecular interactions they provide within the BM, in maintaining the appropriate microenvironment for hematopoietic homeostasis.


Subject(s)
Adipocytes/physiology , Hematopoiesis/physiology , Adipocytes/metabolism , Adipogenesis/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/physiology , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Bone and Bones/metabolism , Bone and Bones/physiology , Chemokine CXCL12/metabolism , Endothelial Cells/metabolism , Endothelial Cells/physiology , Female , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Mice , Mice, Knockout , Mice, Transgenic , Osteoblasts/metabolism , Osteoblasts/physiology , PPAR gamma/metabolism , Receptors, CXCR4/metabolism , Stem Cell Niche/physiology
18.
J Crohns Colitis ; 12(2): 230-244, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-28961797

ABSTRACT

BACKGROUND AND AIMS: Triggering receptor expressed on myeloid cells-1 [TREM-1] is known to amplify inflammation in several diseases. Autophagy and endoplasmic reticulum [ER] stress, which activate the unfolded protein response [UPR], are closely linked and defects in these pathways contribute to the pathogenesis of inflammatory bowel disease [IBD]. Both autophagy and UPR are deeply involved in host-microbiota interactions for the clearance of intracellular pathogens, thus contributing to dysbiosis. We investigated whether inhibition of TREM-1 would prevent aberrant inflammation by modulating autophagy and ER stress and preventing dysbiosis. METHODS: An experimental mouse model of colitis was established by dextran sulphate sodium treatment. TREM-1 was inhibited, either pharmacologically by LR12 peptide or genetically with Trem-1 knock-out [KO] mice. Colon tissues and faecal pellets of control and colitic mice were used. Levels of macroautophagy, chaperone-mediated autophagy [CMA], and UPR proteins were evaluated by western blotting. The composition of the intestinal microbiota was assessed by MiSeq sequencing in both LR12-treated and KO animals. RESULTS: We confirmed that inhibition of TREM-1 attenuates the severity of colitis clinically, endoscopically and histologically. We observed an increase in macroautophagy [ATG1/ULK-1, ATG13, ATG5, ATG16L1, and MAP1LC3-I/II] and in CMA [HSPA8 and HSP90AA1], whereas there was a decrease in the UPR [PERK, IRE-1α, and ATF-6α] protein expression levels in TREM-1 inhibited colitic mice. TREM-1 inhibition prevented dysbiosis. CONCLUSIONS: TREM-1 may represent a novel drug target for the treatment of IBD, by modulating autophagy activity and ER stress.


Subject(s)
Autophagy , Colitis/drug therapy , Endoplasmic Reticulum Stress , Peptides/pharmacology , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Animals , Autophagy/drug effects , Autophagy/genetics , Colitis/chemically induced , DNA, Bacterial/analysis , Dextran Sulfate , Disease Models, Animal , Dysbiosis/prevention & control , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Triggering Receptor Expressed on Myeloid Cells-1/blood , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...