Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1854(10 Pt A): 1412-24, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26151834

ABSTRACT

The 90-kDa heat shock protein (Hsp90) is a highly flexible dimer that is able to self-associate in the presence of divalent cations or under heat shock. In a previous work, we focused on the Mg2+-induced oligomerization process of Hsp90, and characterized the oligomers. Combining analytical ultracentrifugation, size-exclusion chromatography coupled to multi-angle laser light scattering and high-mass matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we studied the interaction of p23 with both Hsp90 dimer and oligomers. Even if p23 predominantly binds the Hsp90 dimer, we demonstrated, for the first time, that p23 is also able to interact with Hsp90 oligomers, shifting the Hsp90 dimer-oligomers equilibrium toward dimer. Our results showed that the Hsp90:p23 binding stoichiometry decreases with the Hsp90 oligomerization degree. Therefore, we propose a model in which p23 would act as a "protein wedge" regarding the Hsp90 dimer closure and the Hsp90 oligomerization process.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Intramolecular Oxidoreductases/chemistry , Protein Multimerization , Animals , Brain Chemistry , Carbodiimides/chemistry , Chromatography, Gel , Cross-Linking Reagents/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Models, Molecular , Prostaglandin-E Synthases , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine , Ultracentrifugation
2.
Anal Chem ; 87(14): 7043-51, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26076190

ABSTRACT

The 90-kDa heat shock protein (Hsp90) is a highly flexible dimer able to self-associate in the presence of divalent cations or under heat shock. This study investigated the relationship between Hsp90 oligomers and the Hsp90 cochaperone Aha1 (activator of Hsp90 ATPase). The interactions of Aha1 with Hsp90 dimers and oligomers were evaluated by ultracentrifugation, size-exclusion chromatography coupled to multiangle laser light scattering and high-mass matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Hsp90 dimer was able to bind up to four Aha1 molecules, and Hsp90 oligomers are also able to interact with Aha1. The binding of Aha1 did not interfere with the Hsp90 oligomerization process. Except for Hsp90 dimer, the stoichiometry of the interaction remained constant, at 2 Aha1 molecules per Hsp90 dimer, regardless of the degree of Hsp90 oligomerization. Moreover, Aha1 predominantly bound to Hsp90 oligomers. Thus, the ability of Hsp90 oligomers to bind the Aha1 ATPase activator reinforces their role within the Hsp90 chaperone machineries.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Animals , Chromatography, Gel , HSP90 Heat-Shock Proteins/metabolism , Humans , Light , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Scattering, Radiation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Swine , Ultracentrifugation
3.
Anal Chem ; 86(21): 10524-30, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25268573

ABSTRACT

Since noncovalent protein macrocomplexes are implicated in many cellular functions, their characterization is essential to understand how they drive several biological processes. Over the past 20 years, because of its high sensitivity, mass spectrometry has been described as a powerful tool for both the protein identification in macrocomplexes and the understanding of the macrocomplexes organization. Nonetheless, stabilizing these protein macrocomplexes, by introducing covalent bonds, is a prerequisite before their analysis by the denaturing mass spectrometry technique. In this study, using the Hsp90/Aha1 macrocomplex as a model (where Hsp denotes a heat shock protein), we optimized a double cross-linking protocol with 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC). This protocol takes place in a two-step process: initially, a cross-linking is performed according to a previously optimized protocol, and then a second cross-linking is performed by increasing the EDC concentration, counterbalanced by a high dilution of sample and, thus, protein macrocomplexes. Using matrix-assisted laser desorption ionization (MALDI) mass spectrometry, we verified the efficiency of our optimized protocol by submitting (or not submitting) samples to the K200 MALDI MS analysis kit containing N-succinimidyl iodo-acetate, suberic acid bis(3-sulfo-N-hydroxysuccinimide ester), suberic acid bis(N-hydroxysuccinimide ester), disuccinimidyl tartrate, and dithiobis(succinimidyl) propionate, developed by the CovalX Company. Results obtained show that our optimized cross-linking protocol allows a complete stabilization of protein macrocomplexes and appears to be very accurate. Indeed, contrary to other cross-linkers, the "zero-length" feature of the EDC reagent prevents overdetermination of the mass of complexes, because EDC does not remain as part of the linkage.


Subject(s)
Cross-Linking Reagents/chemistry , Ethyldimethylaminopropyl Carbodiimide/chemistry , HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/chemistry , Humans , Protein Stability , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
J Biol Chem ; 285(20): 15100-15110, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20228408

ABSTRACT

The 90-kDa heat shock protein (Hsp90) is involved in the regulation and activation of numerous client proteins essential for diverse functions such as cell growth and differentiation. Although the function of cytosolic Hsp90 is dependent on a battery of cochaperone proteins regulating both its ATPase activity and its interaction with client proteins, little is known about the real Hsp90 molecular mechanism. Besides its highly flexible dimeric state, Hsp90 is able to self-oligomerize in the presence of divalent cations or under heat shock. In addition to dimers, oligomers exhibit a chaperone activity. In this work, we focused on Mg(2+)-induced oligomers that we named Type I, Type II, and Type III in increasing molecular mass order. After stabilization of these quaternary structures, we optimized a purification protocol. Combining analytical ultracentrifugation, size exclusion chromatography coupled to multiangle laser light scattering, and high mass matrix-assisted laser desorption/ionization time of flight mass spectrometry, we determined biochemical and biophysical characteristics of each Hsp90 oligomer. We demonstrate that Type I oligomer is a tetramer, and Type II is an hexamer, whereas Type III is a dodecamer. These even-numbered structures demonstrate that the building brick for oligomerization is the dimer up to the Type II, whereas Type III probably results from the association of two Type II. Moreover, the Type II oligomer structure, studied by negative stain transmission electron microscopy tomography, exhibits a "nest-like" shape that forms a "cozy chaperoning chamber" where the client protein folding/protection could occur.


Subject(s)
Biopolymers/metabolism , HSP90 Heat-Shock Proteins/metabolism , Magnesium/metabolism , Animals , Biopolymers/chemistry , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , HSP90 Heat-Shock Proteins/chemistry , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Swine , Ultracentrifugation
5.
J Biol Chem ; 285(13): 9525-9534, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20110359

ABSTRACT

Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation. Both proteins were purified from porcine brain, and their interaction was characterized in vitro by using spectrophotometry, sedimentation assays, video-enhanced differential interference contrast light microscopy, and native polyacrylamide gel electrophoresis. Our results show that Hsp90 protects tubulin against thermal denaturation and keeps it in a state compatible with microtubule polymerization. We demonstrate that Hsp90 cannot resolve tubulin aggregates but that it likely binds early unfolding intermediates, preventing their aggregation. Protection was maximal at a stoichiometry of two molecules of Hsp90 for one of tubulin. This protection does not require ATP binding and hydrolysis by Hsp90, but it is counteracted by geldanamycin, a specific inhibitor of Hsp90.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Tubulin/chemistry , Adenosine Triphosphate/chemistry , Animals , Benzoquinones/pharmacology , Brain/metabolism , Cytosol/metabolism , Electrophoresis, Polyacrylamide Gel/methods , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hot Temperature , Lactams, Macrocyclic/pharmacology , Light , Microscopy, Interference/methods , Microtubules/metabolism , Protein Denaturation , Spectrophotometry/methods , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...