Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Burn Care Res ; 41(2): 306-316, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32074295

ABSTRACT

Vital, genetically engineered, porcine xenografts represent a promising alternative to human cadaveric allografts (HCA) in the treatment of severe burns. However, their clinical value would be significantly enhanced if preservation and long-term storage-without the loss of cellular viability-were feasible. The objective of this study was to examine the direct impact of cryopreservation and the length of storage on critical in vivo and in vitro parameters, necessary for a successful, potentially equivalent substitute to HCA. In this study, vital, porcine skin grafts, continuously cryopreserved for more than 7 years were compared side-by-side to otherwise identically prepared skin grafts stored for only 15 minutes. Two major histocompatibility complex (MHC)-controlled donor-recipient pairs received surgically created deep-partial wounds and subsequent grafting with split-thickness porcine skin grafts, differentiated only by the duration of storage. Clinical and histological outcomes, as well as quantification of cellular viability via a series of 3-4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays, were assessed. No statistically significant differences were observed between skin grafts cryopreserved for 15 minutes vs 7 years. Parametric distinctions between xenografts stored for short- vs long-term durations could not be ascertained across independent clinical, histological, or in vitro evaluative methods. The results of this study validate the ability to reliably preserve, store, and retain the essential metabolic activity of porcine tissues after cryopreservation. Plentiful, safe, and readily accessible inventories of vital xenografts represent an advantageous solution to numerous limitations associated with HCA, in the treatment of severe burns.


Subject(s)
Burns/surgery , Cryopreservation/methods , Skin Transplantation/methods , Animals , Disease Models, Animal , Swine
2.
J Burn Care Res ; 41(2): 229-240, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31943027

ABSTRACT

Vital, genetically engineered porcine skin transplants have long been regarded as a promising treatment option for severe burn wounds. The objective of this two-part, preclinical study was to evaluate the ability of vital, split-thickness skin xenotransplants derived from designated pathogen-free, alpha 1,3 galactosyltransferase knockout miniature swine to provide temporary wound closure of full-thickness wound defects intended to model severe and extensive, deep partial- and full-thickness burn wounds. In part 1 of the study, four full-thickness wound defects were introduced in four cynomolgus macaques recipients and, then engrafted with two xenografts and two allografts to achieve temporary wound closure. On POD-15, autografts were used to achieve definitive wound closure and were observed until POD-22. In part 2 of the study, four additional subjects each received two full-thickness wound defects, followed by two xenografts to achieve temporary wound closure, and were observed postoperatively for 30 days without further intervention. All grafts were assessed for signs of adherence to the wound bed, vascularity, and signs of immune rejection via gross clinical and histological methods. Xenograft and allograft comparators were equivalent in part 1, and later autografts were otherwise indistinguishable. In part 2, all xenotransplants demonstrated adherence, vascularity, and survival until POD-30. These were unexpected results that exceed previously published findings in similar models. Furthermore, the ensuing GLP-study report directly supported regulatory clearance, permitting a phase I clinical trial. This solution holds great promise as an alternative to human cadaver allograft, the current standard of care for the treatment of severe burns.


Subject(s)
Burns/surgery , Skin Transplantation/methods , Swine, Miniature/genetics , Wound Closure Techniques , Allografts , Animals , Disease Models, Animal , Female , Galactosyltransferases , Genetic Engineering , Graft Rejection , Heterografts , Macaca fascicularis , Male , Swine
3.
J Burn Care Res ; 38(1): e55-e61, 2017.
Article in English | MEDLINE | ID: mdl-27606556

ABSTRACT

The clinical use of frozen, human allogeneic skin grafts is considered a suitable alternative to freshly harvested allogeneic skin grafts when the latter are not available. However, limited functional and histological information exists regarding the effects of cryopreservation on allogeneic skin grafts, especially those across mismatched histocompatibility barriers. Thus, we performed a side-by-side comparative study of fresh vs frozen skin grafts, across both minor and major histocompatibility barriers, in a miniature swine model. Since porcine skin shares many physical and immunological properties with human skin, our findings have relevance to current clinical practices involving allogeneic grafting and may support future, temporary wound therapies involving frozen xenografts, comprised genetically modified porcine skin. Four miniature swine underwent harvest and grafting of split-thickness skin, with and without cryopreservation, in order to observe autologous grafts and grafts across minor and major histocompatibility barriers. A biopsy of the grafts was done at regular intervals for study of architecture, vascularization, and outcomes. All grafts vascularized without technical complications. Differences were noted in the early appearance of some fresh vs frozen grafts, but no significant difference was observed in overall survival times in any of the experimental groups. These results demonstrate that despite early observable differences in the healing process, cryopreservation and thawing does not significantly affect long-term graft survival or time to rejection, thus supporting the clinical and experimental use of fresh and frozen split-thickness skin grafts as comparable and interchangeable.


Subject(s)
Burns/surgery , Skin Transplantation/methods , Skin/pathology , Tissue Preservation/methods , Animals , Biopsy, Needle , Cryopreservation/methods , Disease Models, Animal , Graft Rejection , Graft Survival , Immunohistochemistry , Random Allocation , Sensitivity and Specificity , Skin Transplantation/adverse effects , Swine , Swine, Miniature , Tissue and Organ Harvesting/methods , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...