Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(11): 7286-7295, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778243

ABSTRACT

Despite evidence showing that polymer brushes (PBs) are a powerful tool used in biosensing for minimizing nonspecific interactions, allowing for optimization of biosensing performance, and the fact that GaAs semiconductors have proven to have a remarkable potential for sensitive biomolecule detection, the combination of these two robust components has never been considered nor evaluated as a platform for biosensing applications. This work reports different methodologies to prepare and tune PBs on the GaAs interface (PB-GaAs) and their potential as useful platforms for antibody grafting, with the ultimate goal of demonstrating the innovative and attractive character of the PB-GaAs interfaces in the enhanced capture of antibodies and control of nonspecific interactions. Three different functionalization approaches were explored, one "grafting-to" and two "grafting-from," in which atom transfer radical polymerization (ATRP) was performed, followed by their corresponding characterizations. Demonstration of the compatibility of Escherichia coli (E. coli) and Legionella pneumophila (Lp) antibodies with the PB-GaAs platform compared to the results obtained with conventional biosensing architectures developed for GaAs indicates the attractive potential for operation of a sensitive biosensor. Furthermore, these results showed that by carefully choosing the nature and preparation methodology of a PB-GaAs interface, it is possible to effectively tune the affinity of PB-GaAs-based sensors toward E. coli and Lp antibodies ultimately demonstrating the superior specificity of the developed biosensing platform.

2.
Biosensors (Basel) ; 11(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513950

ABSTRACT

The detection of water contamination with Legionella pneumophila is of critical importance to manufacturers of water processing equipment and public health entities dealing with water networks and distribution systems. Detection methods based on polymerase chain reaction or biosensor technologies require preconcentration steps to achieve attractive sensitivity levels. Preconcentration must also be included in protocols of automated collection of water samples by systems designed for quasi-continuous monitoring of remotely located water reservoirs for the presence of L. pneumophila. We designed and characterized a water sampling module for filtration and backwashing intended for analysis of low-to-medium contaminated water, typically with L. pneumophila bacteria not exceeding 50 colony-forming units per milliliter. The concentration factors of 10× and 21× were achieved with 0.22 and 0.45 µm filters, respectively, for samples of bacteria prepared in clean saline solutions. However, a 5× concentration factor was achieved with 0.45 µm filters for a heavily contaminated or turbid water typical of some industrial water samples.


Subject(s)
Environmental Monitoring/methods , Legionella pneumophila/isolation & purification , Water Microbiology , Filtration , Water , Water Pollution/statistics & numerical data
3.
Langmuir ; 35(13): 4415-4427, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-29056049

ABSTRACT

We report on the formation kinetics of mixed self-assembled monolayers (SAMs) comprising 16-mercaptohexadecanoic acid (MHDA) and 11-mercapto-1-undecanol (MUDO) thiols on GaAs(100) substrates. These compounds were selected for their potential in constructing highly selective and efficient architectures for biosensing applications. The molecular composition and quality of one-compound and mixed SAMs were determined by the Fourier transform infrared absorption spectroscopy measurements. The formation of enhanced-quality mixed SAMs was investigated as a function of the molecular composition of the thiol mixture and the proportion of ethanol/water solvent used during their arrangement. Furthermore, the formation of mixed SAMs has been carried out by successive immersion of MHDA SAMs in MUDO thiol solutions and MUDO SAMs in MHDA thiol solution through the process involving thiol-thiol substitution. Our results, in addition to confirming that water-ethanol-based solvents improve the packing density of single thiol monolayers, demonstrate the attractive role of water-ethanol solvents in forming superior quality mixed SAMs.

4.
Biointerphases ; 11(2): 021004, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27098616

ABSTRACT

The authors have investigated the effect of chemotaxis on immobilization of bacteria on the surface of biofunctionalized GaAs (001) samples. Escherichia coli K12 bacteria were employed to provide a proof-of-concept of chemotaxis-enhanced bacterial immobilization, and then, these results were confirmed using Legionella pneumophila. The recognition layer was based on a self-assembled monolayer of thiol functionalized with specific antibodies directed toward E. coli or L. pneumophila, together with the enzyme beta-galactosidase (ß-gal). The authors hypothesized that this enzyme together with its substrate lactose would produce a gradient of glucose which would attract bacteria toward the biochip surface. The chemotaxis effect was monitored by comparing the number of bacteria bound to the biochip surface with and without attractant. The authors have observed that ß-gal plus lactose enhanced the immobilization of bacteria on our biochips with a higher effect at low bacterial concentrations. At 100 and 10 bacteria/ml, respectively, for E. coli and L. pneumophila, the authors observed up to 11 and 8 times more bacteria bound to biochip surfaces assisted with the chemotaxis effect in comparison to biochips without chemotaxis. At 10(4) bacteria/ml, the immobilization enhancement rate did not exceed two times.


Subject(s)
Arsenicals , Bacterial Adhesion , Cells, Immobilized/physiology , Chemotaxis , Escherichia coli K12/physiology , Gallium , Legionella pneumophila/physiology , Antibodies, Bacterial/metabolism , Enzymes, Immobilized/metabolism , Escherichia coli K12/drug effects , Glucose/metabolism , Legionella pneumophila/drug effects , beta-Galactosidase/metabolism
5.
J Vis Exp ; (105): e52720, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26575362

ABSTRACT

The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.


Subject(s)
Silicon/chemistry , Silicon/radiation effects , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Lasers , Microscopy, Atomic Force , Photoelectron Spectroscopy , Surface Properties/radiation effects , Ultraviolet Rays , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...