Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2018: 7156435, 2018.
Article in English | MEDLINE | ID: mdl-29984246

ABSTRACT

Aging is characterized by functional decline in homeostatic regulation and vital cellular events. This process can be linked with the development of cardiovascular diseases (CVDs). In this review, we discussed aging-induced biological alterations that are associated with CVDs through the following aspects: (i) structural, biochemical, and functional modifications; (ii) autonomic nervous system (ANS) dysregulation; (iii) epigenetic alterations; and (iv) atherosclerosis and stroke development. Aging-mediated structural and biochemical modifications coupled with gradual loss of ANS regulation, vascular stiffening, and deposition of collagen and calcium often disrupt cardiovascular system homeostasis. The structural and biochemical adjustments have been consistently implicated in the progressive increase in mechanical burden and functional breakdown of the heart and vessels. In addition, cardiomyocyte loss in this process often reduces adaptive capacity and cardiovascular function. The accumulation of epigenetic changes also plays important roles in the development of CVDs. In summary, the understanding of the aging-mediated changes remains promising towards effective diagnosis, discovery of new drug targets, and development of new therapies for the treatment of CVDs.


Subject(s)
Aging , Cardiovascular Diseases/physiopathology , Cardiovascular System , Cardiovascular Physiological Phenomena , Homeostasis , Humans , Myocytes, Cardiac
2.
Sci Rep ; 8(1): 11276, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050041

ABSTRACT

The infusion of hypertonic saline solution (HSS) is known to be beneficial to the treatment of hypovolemic hemorrhage (HH). The central mechanism of HSS-induced cardiovascular and autonomic recovery of animals subjected to HH remains unclear. Hence, the present study evaluated the involvement of median preoptic nucleus (MnPO) and medullary noradrenergic neurons (A1 and A2) in HSS-induced cardiovascular and sympathetic responses in hemorrhagic rats. The wistar rats were subjected to specific lesion of noradrenergic neurons through the nanoinjections of anti-DßH-saporin into caudal ventrolateral medulla (A1 neurons) and nucleus of the solitary tract (A2 neurons). After recovery, mean arterial pressure (MAP) and renal sympathetic nervous activity were recorded. The HH was performed through blood withdrawal until a MAP of 60 mmHg was attained. In sham rats, HSS infusion (3M NaCl) reestablished MAP without change in HH-induced sympathoinhibition. The muscimol (agonist of GABAA receptor) was nanoinjected in MnPO during HH and MnPO inhibition abolished the recovery of MAP and HSS-induced sympathoinhibition. Simultaneous lesions of A1 and A2 abolished MAP restoration and sympathoinhibition after HSS infusion. These results suggest that the recovery of MAP and HSS-induced sympathoinhibition in hemorrhaged rats depend on intact neural projections from A1 and A2 to MnPO.


Subject(s)
Adaptation, Physiological , Adrenergic Neurons/physiology , Cardiovascular Physiological Phenomena , Hemorrhage/physiopathology , Preoptic Area/physiology , Sympathetic Nervous System/physiology , Animals , Arterial Pressure , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...