Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
ACS Infect Dis ; 8(7): 1356-1366, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35732073

ABSTRACT

Neglected tropical diseases (NTDs), including trypanosomiasis, leishmaniasis, and schistosomiasis, result in a significant burden in terms of morbidity and mortality worldwide every year. Current antiparasitic drugs suffer from several limitations such as toxicity, no efficacy toward all of the forms of the parasites' life cycle, and/or induction of resistance. Histone-modifying enzymes play a crucial role in parasite growth and survival; thus, the use of epigenetic drugs has been suggested as a strategy for the treatment of NTDs. We tested structurally different HDACi 1-9, chosen from our in-house library or newly synthesized, against Trypanosoma cruzi, Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all of the tested parasites, but it was too toxic against host cells, hampering further studies. The retinoic 2'-aminoanilide 8 was less potent than 4 in all parasitic assays, but as its toxicity is considerably lower, it could be the starting structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite growth combined with moderate toxicity. In S. mansoni, 4's close analogs 17-20 were tested in new transformed schistosomula (NTS) and adult worms displaying high death induction against both parasite forms. Among them, 17 and 19 exhibited very low toxicity in human retinal pigment epithelial (RPE) cells, thus being promising compounds for further optimization.


Subject(s)
Chagas Disease , Leishmania , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Histone Deacetylase Inhibitors/pharmacology , Schistosoma mansoni
2.
Cell Rep ; 37(12): 110129, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936867

ABSTRACT

Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Animals , Catalytic Domain , Cell Cycle , Cell Division/drug effects , Cell Line , Cell Proliferation/drug effects , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chlorocebus aethiops , DNA, Protozoan , Female , Genetic Complementation Test , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Host-Parasite Interactions , Humans , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Phylogeny , Protein Conformation , Protein Processing, Post-Translational , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Deletion , Trypanosoma cruzi/drug effects , Vero Cells
3.
Viruses ; 12(11)2020 11 10.
Article in English | MEDLINE | ID: mdl-33182673

ABSTRACT

Dengue is an acute viral disease caused by Dengue virus (DENV) and is considered to be the most common arbovirus worldwide. The clinical characteristics of dengue may vary from asymptomatic to severe complications and severe organ impairment, particularly affecting the liver. Dengue treatment is palliative with acetaminophen (APAP), usually known as Paracetamol, being the most used drug aiming to relieve the mild symptoms of dengue. APAP is a safe and effective drug but, like dengue, can trigger the development of liver disorders. Given this scenario, it is necessary to investigate the effects of combining these two factors on hepatocyte homeostasis. Therefore, this study aimed to evaluate the molecular changes in hepatocytes resulting from the association between DENV infection and treatment with sub-toxic APAP concentrations. Using an in vitro experimental model of DENV-2 infected hepatocytes (AML-12 cells) treated with APAP, we evaluated the influence of the virus and drug association on the transcriptome of these hepatocytes by RNA sequencing (RNAseq). The virus-drug association was able to induce changes in the gene expression profile of AML-12 cells and here we highlight and explore these changes and its putative influence on biological processes for cellular homeostasis.


Subject(s)
Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , Dengue Virus/drug effects , Hepatocytes/drug effects , Hepatocytes/virology , Host Microbial Interactions , Transcriptome , Animals , Cell Line , Homeostasis/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Liver/cytology , Liver/drug effects , Liver/virology , Mice , Sequence Analysis, RNA , Virus Replication/drug effects
4.
Dev Comp Immunol ; 104: 103557, 2020 03.
Article in English | MEDLINE | ID: mdl-31759924

ABSTRACT

The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.


Subject(s)
Biomphalaria/immunology , Schistosoma mansoni/physiology , Schistosomiasis/transmission , Animals , Disease Vectors , Epigenomics , Genome , Host-Parasite Interactions , Humans , Immunity, Cellular , Proteomics , Signal Transduction , Transcriptome
5.
Parasit Vectors ; 12(1): 493, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31640761

ABSTRACT

BACKGROUND: Over the past five years, as a public service to encourage and accelerate drug discovery for diseases of poverty, the Medicines for Malaria Venture (MMV) has released box sets of 400 compounds named the Malaria, Pathogen and Stasis Boxes. Here, we screened the Pathogen Box against the post-infective larvae (schistosomula) of Schistosoma mansoni using assays particular to the three contributing institutions, namely, the University of California San Diego (UCSD) in the USA, the Swiss Tropical and Public Health Institute (Swiss TPH) in Switzerland, and the Fundação Oswaldo Cruz (FIOCRUZ) in Brazil. With the same set of compounds, the goal was to determine the degree of inter-assay variability and identify a core set of active compounds common to all three assays. New drugs for schistosomiasis would be welcome given that current treatment and control strategies rely on chemotherapy with just one drug, praziquantel. METHODS: Both the UCSD and Swiss TPH assays utilize daily observational scoring methodologies over 72 h, whereas the FIOCRUZ assay employs XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) at 72 h to measure viability as a function of NAD+/NADH redox state. Raw and transformed data arising from each assay were assembled for comparative analysis. RESULTS: For the UCSD and Swiss TPH assays, there was strong concordance of at least 87% in identifying active and inactive compounds on one or more of the three days. When all three assays were compared at 72 h, concordance remained a robust 74%. Further, robust Pearson's correlations (0.48-0.68) were measured between the assays. Of those actives at 72 h, the UCSD, Swiss TPH and FIOCRUZ assays identified 86, 103 and 66 compounds, respectively, of which 35 were common. Assay idiosyncrasies included the identification of unique compounds, the differential ability to identify known antischistosomal compounds and the concept that compounds of interest might include those that increase metabolic activity above baseline. CONCLUSIONS: The inter-assay data generated were in good agreement, including with previously reported data. A common set of antischistosomal molecules for further exploration has been identified .


Subject(s)
Drug Discovery/methods , Parasitic Sensitivity Tests/methods , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Animals , Biomphalaria/parasitology , Cricetinae , Female , Larva/classification , Larva/drug effects , Life Cycle Stages , Mesocricetus , Parasitic Sensitivity Tests/standards , Phenotype , Schistosoma mansoni/classification , Schistosoma mansoni/growth & development , Schistosomicides/therapeutic use
6.
Infect Genet Evol ; 53: 175-188, 2017 09.
Article in English | MEDLINE | ID: mdl-28506839

ABSTRACT

The availability of the genomic data of diverse parasites provides an opportunity to identify new drug candidates against neglected tropical diseases affecting people worldwide. Histone modifying enzymes (HMEs) are potential candidates since they play key roles in the regulation of chromatin modifications, thus globally regulating gene expression. Furthermore, aberrant epigenetic states are often associated with human diseases, leading to great interest in HMEs as therapeutic targets. Our work focused on two families of protein lysine deacetylases (HDACs and sirtuins). First, we identified potential homologues in the predicted proteomes of selected taxa by using hidden Markov model profiles. Then, we reconstructed the evolutionary relationships of protein sequences by Bayesian inference and maximum likelihood method. In addition, we constructed homology models for five parasite HDACs to provide information for experimental validation and structure-based optimization of inhibitors. Our results showed that parasite genomes code for diverse HDACs and sirtuins. The evolutionary pattern of protein deacetylases with additional experimental data points to these enzymes as common drug targets among parasites. This work has improved the functional annotation of approximately 63% HDACs and 51% sirtuins in the selected taxa providing insights for experimental design. Homology models pointed out structural conservation and differences among parasite and human homologues and highlight potential candidates for further inhibitor development. Some of these parasite proteins are undergoing RNA interference or knockout analyses to validate the function of their corresponding genes. In the future, we will investigate the main functions performed by these proteins, related phenotypes, and their potential as therapeutic targets.


Subject(s)
Anthelmintics/chemistry , Antiprotozoal Agents/chemistry , Genome , Helminth Proteins/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Protozoan Proteins/chemistry , Animals , Anthelmintics/pharmacology , Antiprotozoal Agents/pharmacology , Databases, Genetic , Epigenesis, Genetic , Evolution, Molecular , Gene Expression , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminthiasis/drug therapy , Helminthiasis/parasitology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Leishmania/drug effects , Leishmania/enzymology , Leishmania/genetics , Molecular Docking Simulation , Neglected Diseases , Phylogeny , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Conformation , Protozoan Infections/drug therapy , Protozoan Infections/parasitology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schistosoma/drug effects , Schistosoma/enzymology , Schistosoma/genetics , Structural Homology, Protein , Trypanosoma/drug effects , Trypanosoma/enzymology , Trypanosoma/genetics
7.
PLoS Negl Trop Dis ; 11(4): e0005539, 2017 04.
Article in English | MEDLINE | ID: mdl-28406899

ABSTRACT

BACKGROUND: Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. METHODOLOGY/PRINCIPAL FINDINGS: TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. CONCLUSIONS/SIGNIFICANCE: Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression of dozens of histone reader genes involved in regulation of the epigenetic program in S. mansoni can be used as a starting point to look for possible novel schistosomicidal targets.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histones/genetics , Hydroxamic Acids/pharmacology , Indazoles/pharmacology , Pyridones/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/genetics , Acetylation , Animals , Chromatin/genetics , DNA Replication , Down-Regulation , Female , Genome, Helminth , Humans , Male , Molecular Docking Simulation , Promoter Regions, Genetic , Transcriptome , Up-Regulation
8.
Plos Neglect. Trop. Dis. ; 11(4): e0005539, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15345

ABSTRACT

Background Schistosomiasis is a parasitic disease infecting hundreds of millions of people worldwide. Treatment depends on a single drug, praziquantel, which kills the Schistosoma spp. parasite only at the adult stage. HDAC inhibitors (HDACi) such as Trichostatin A (TSA) induce parasite mortality in vitro (schistosomula and adult worms), however the downstream effects of histone hyperacetylation on the parasite are not known. Methodology/Principal findings TSA treatment of adult worms in vitro increased histone acetylation at H3K9ac and H3K14ac, which are transcription activation marks, not affecting the unrelated transcription repression mark H3K27me3. We investigated the effect of TSA HDACi on schistosomula gene expression at three different time points, finding a marked genome-wide change in the transcriptome profile. Gene transcription activity was correlated with changes on the chromatin acetylation mark at gene promoter regions. Moreover, combining expression data with ChIP-Seq public data for schistosomula, we found that differentially expressed genes having the H3K4me3 mark at their promoter region in general showed transcription activation upon HDACi treatment, compared with those without the mark, which showed transcription down-regulation. Affected genes are enriched for DNA replication processes, most of them being up-regulated. Twenty out of 22 genes encoding proteins involved in reducing reactive oxygen species accumulation were down-regulated. Dozens of genes encoding proteins with histone reader motifs were changed, including SmEED from the PRC2 complex. We targeted SmEZH2 methyltransferase PRC2 component with a new EZH2 inhibitor (GSK343) and showed a synergistic effect with TSA, significantly increasing schistosomula mortality. Conclusions/Significance Genome-wide gene expression analyses have identified important pathways and cellular functions that were affected and may explain the schistosomicidal effect of TSA HDACi. The change in expression of dozens of histone reader genes involved in regulation of the epigenetic program in S. mansoni can be used as a starting point to look for possible novel schistosomicidal targets.

9.
J Parasitol Res ; 2012: 849132, 2012.
Article in English | MEDLINE | ID: mdl-23227308

ABSTRACT

Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies.

10.
Braz. j. microbiol ; 42(2): 650-657, Apr.-June 2011. tab
Article in English | LILACS | ID: lil-590011

ABSTRACT

We used a cultivation-independent, clone library-based 16S rRNA gene sequence analysis to identify bacterial communities present during traditional fermentation in sour cassava starch, cachaça and cheese production in Brazil. Partial 16S rRNA gene clone sequences from sour cassava starch samples collected on day five of the fermentation process indicated that Leuconostoc citreum was the most prevalent species, representing 47.6 percent of the clones. After 27 days of fermentation, clones (GenBank accession numbers GQ999786 and GQ999788) related to unculturable bacteria were the most prevalent, representing 43.8 percent of the clones from the bacterial community analyzed. The clone represented by the sequence GQ999786 was the most prevalent at the end of the fermentation period. The majority of clones obtained from cachaça samples during the fermentation of sugar cane juice were from the genus Lactobacillus. Lactobacillus nagelli was the most prevalent at the beginning of the fermentation process, representing 76.9 percent of the clones analyzed. After 21 days, Lactobacillus harbinensis was the most prevalent species, representing 75 percent of the total clones. At the end of the fermentation period, Lactobacillus buchneri was the most prevalent species, representing 57.9 percent of the total clones. In the Minas cheese samples, Lactococcus lactis was the most prevalent species after seven days of ripening. After 60 days of ripening, Streptococcus salivarius was the most prevalent species. Our data show that these three fermentation processes are conducted by a succession of bacterial species, of which lactic acid bacteria are the most prevalent.

11.
Braz J Microbiol ; 42(2): 650-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-24031676

ABSTRACT

We used a cultivation-independent, clone library-based 16S rRNA gene sequence analysis to identify bacterial communities present during traditional fermentation in sour cassava starch, cachaça and cheese production in Brazil. Partial 16S rRNA gene clone sequences from sour cassava starch samples collected on day five of the fermentation process indicated that Leuconostoc citreum was the most prevalent species, representing 47.6% of the clones. After 27 days of fermentation, clones (GenBank accession numbers GQ999786 and GQ999788) related to unculturable bacteria were the most prevalent, representing 43.8% of the clones from the bacterial community analyzed. The clone represented by the sequence GQ999786 was the most prevalent at the end of the fermentation period. The majority of clones obtained from cachaça samples during the fermentation of sugar cane juice were from the genus Lactobacillus. Lactobacillus nagelli was the most prevalent at the beginning of the fermentation process, representing 76.9% of the clones analyzed. After 21 days, Lactobacillus harbinensis was the most prevalent species, representing 75% of the total clones. At the end of the fermentation period, Lactobacillus buchneri was the most prevalent species, representing 57.9% of the total clones. In the Minas cheese samples, Lactococcus lactis was the most prevalent species after seven days of ripening. After 60 days of ripening, Streptococcus salivarius was the most prevalent species. Our data show that these three fermentation processes are conducted by a succession of bacterial species, of which lactic acid bacteria are the most prevalent.

13.
Braz. j. microbiol ; 41(2): 486-492, Apr.-June 2010. tab
Article in English | LILACS | ID: lil-545358

ABSTRACT

During the production of traditional cachaça (alembicïs cachaça), contamination of the fermented must is one of the factors leading to economic losses in the beverage manufacturing industry. The diversity of bacterial populations and the role of these microorganisms during the cachaça production process are still poorly understood in Brazil. In our work, the fermentation process was followed in two distilleries located in the state of Minas Gerais. The objective of this work was to identify the populations of lactic acid bacteria present during cachaça fermentation using physiological and molecular methods. Lactic acid bacteria were isolated in high frequencies during all of the fermentative processes, and Lactobacillus plantarum and L. casei were the most prevalent species. Other lactic acid bacteria were found in minor frequencies, such as L. ferintoshensis, L. fermentum, L. jensenii, L. murinus, Lactococcus lactis, Enterococcus sp. and Weissella confusa. These bacteria could contribute to the increase of volatile acidity levels or to the production of compounds that could influence the taste and aroma of the beverage.


Subject(s)
Humans , Lactic Acid/isolation & purification , Gram-Positive Bacteria/isolation & purification , Alcoholic Beverages/analysis , Distillation , Fermentation , Lactose Factors , Environmental Pollution , Industry , Methods , Methods
14.
Braz J Microbiol ; 41(2): 486-92, 2010 Apr.
Article in English | MEDLINE | ID: mdl-24031520

ABSTRACT

During the production of traditional cachaça (alembic´s cachaça), contamination of the fermented must is one of the factors leading to economic losses in the beverage manufacturing industry. The diversity of bacterial populations and the role of these microorganisms during the cachaça production process are still poorly understood in Brazil. In our work, the fermentation process was followed in two distilleries located in the state of Minas Gerais. The objective of this work was to identify the populations of lactic acid bacteria present during cachaça fermentation using physiological and molecular methods. Lactic acid bacteria were isolated in high frequencies during all of the fermentative processes, and Lactobacillus plantarum and L. casei were the most prevalent species. Other lactic acid bacteria were found in minor frequencies, such as L. ferintoshensis, L. fermentum, L. jensenii, L. murinus, Lactococcus lactis, Enterococcus sp. and Weissella confusa. These bacteria could contribute to the increase of volatile acidity levels or to the production of compounds that could influence the taste and aroma of the beverage.

15.
PLoS Negl Trop Dis ; 3(11): e547, 2009 Nov 10.
Article in English | MEDLINE | ID: mdl-19901992

ABSTRACT

BACKGROUND: During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. METHODOLOGY/PRINCIPAL FINDINGS: In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p

Subject(s)
Helminth Proteins/metabolism , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/parasitology , Transcription Factors/metabolism , Animals , COS Cells , Cell Nucleus/metabolism , Chlorocebus aethiops , Female , Helminth Proteins/genetics , Humans , Male , Protein Binding , Protein Transport , Schistosoma mansoni/genetics , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/metabolism , Transcription Factors/genetics
16.
Exp Parasitol ; 116(4): 440-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17420016

ABSTRACT

The SCF (Skp1-Cul1-F-box) complex is one of the several E3 ligase enzymes and it catalyzes protein ubiquitination and degradation by the 26S proteasome. Rbx1 is a member of the SCF complex in humans and HRT1 is its yeast orthologue. A cDNA encoding a Schistosoma mansoni Rbx1 homolog was cloned and functionally characterized. Heterologous functional complementation in yeast showed that the worm SmRbx gene was able to complement the HRT1yeast null mutation. Gene deletion constructs for N- and C-termini truncated proteins were used to transform hrt1(-) yeast mutant strains, allowing us to observe that regions reported to be involved in the interaction with cullin1 (Cul1) were essential for SmRbx function. Yeast two-hybrid assays using SmRbx and yeast Cul1 confirmed that SmRbx, but not the mutant SmRbxDelta24N, lacking the N-terminus of the protein, was capable of interacting with Cul1. These results suggest that SmRbx protein is involved in the SCF complex formation.


Subject(s)
Helminth Proteins/genetics , Schistosoma mansoni/genetics , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA, Complementary/chemistry , DNA, Helminth/chemistry , Expressed Sequence Tags , Female , Genetic Complementation Test , Genetic Vectors , Helminth Proteins/chemistry , Humans , Male , Molecular Sequence Data , Mutation , Reverse Transcriptase Polymerase Chain Reaction , SKP Cullin F-Box Protein Ligases , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Schistosoma mansoni/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...