Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Ethnopharmacol ; 333: 118459, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897034

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazilian popular medicine, Lippia alba leaves are used in teas to treat pain and inflammatory diseases. AIM OF THE STUDY: to evaluate the chemical composition, antinociceptive, and anti-inflammatory activities of Lippia alba essential oil and its major compound geraniol. MATERIAL AND METHODS: Lippia alba leaves were collected in Pará state, Brazil. The leaf essential oil was obtained using a modified Clevenger-type extractor. Then, the oil was analyzed by GC and GC-MS analyses. To evaluate the toxicity of LaEO and geraniol, the doses of 50, 300, and 2000 mg/kg were used in a mouse model. For antinociception tests, abdominal contortion, hot plate, and formalin tests were used; all groups were treated with LaEO and geraniol at doses of 25, 50, and 100 mg/kg; and to evaluate inflammation using the ear edema model. RESULTS: The constituents identified in the highest content were oxygenated monoterpenes: geraniol (37.5%), geranial (6.7%) and neral (3.8%). The animals treated with LaEO and geraniol demonstrated atypical behaviors with aspects of lethargy and drowsiness, characteristics of animals in a state of sedation; the relative weights showed no significant difference compared to the controls. In the abdominal contortion test, LaEO at 25 mg/kg, 50 mg/kg doses, and 100 mg/kg reduced the number of contortions, representing a percentage reduction of 84.64%, 81.23%, and 66.21% respectively. In the hot plate test, LaEO and geraniol increased the latency time at doses of 25, 50, and 100 mg/kg in all test periods; there was no statistical difference between LaEO and geraniol. In the first phase of the formalin test, only doses of 25 mg/kg and 100 mg/kg of LaEO showed significant activity, reducing the latency time by 53.40% and 58.90%. LaEO at doses of 25 mg/kg and 100 mg/kg reduced the size of the edema, demonstrating an anti-inflammatory activity of 59.38% (25 mg/kg) and 50% (100 mg/kg). CONCLUSION: Lippia alba essential oil and geraniol showed central/peripheral analgesic and anti-inflammatory potential and can be used as an alternative or complementary treatment to conventional drugs. More studies are needed to evaluate its action mechanisms and its analgesic effects.

2.
Foods ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790790

ABSTRACT

Native and exotic fruits from the Amazon have varied characteristics, with aroma being a decisive factor in their acceptance for medicinal use as a nutraceutical supplement. This work aimed to analyze the chemical constituents of the volatile concentrates of some Myrtaceous fruit species sampled in the Brazilian Amazon. The fruit's pulps were subjected to simultaneous distillation-extraction, and gas chromatography-mass spectrometry was used to analyze their volatile chemical composition. In the volatile concentrate of Eugenia stipitata (Araçá-boi) α-pinene (17.5%), citronellyl butanoate (15.6%), and pogostol (13.5%) were identified as primary constituents; Eugenia uniflora (Ginja) concentrate comprised curzerene (30.5%), germacrone (15.4%), atractylone (13.1%), and (E)-ß-ocimene (11.1%); in Myrciaria dubia (Camu-Camu), α-pinene (55.8%), (E)-ß-ocimene (13.1%), and α-terpineol (10.0%) were present; in Psidium guajava (Goiaba) were (2E)-hexenal (21.7%), hexanal (15.4%), caryophylla-4(12),8(13)-dien-5-ß-ol (10.5%), caryophyllene oxide (9.2%), and pogostol (8.3%); and in Psidium guineense (Araçá), limonene (25.2%), ethyl butanoate (12.1%), epi-ß-bisabolol (9.8%), and α-pinene (9.2%) were the main constituents. The analyzed volatile concentrates of these fruit species presented a significant diversity of constituents with a predominance of functional groups, such as monoterpenes, sesquiterpenes, and fatty acid derivatives, originating from the plant's secondary metabolism and playing an important role in their nutritional and medicinal uses.

3.
An Acad Bras Cienc ; 96(1): e20230532, 2024.
Article in English | MEDLINE | ID: mdl-38597491

ABSTRACT

In this work, evaluated the antifungal chemosensitizing effect of the Lippia origanoides essential oil (EO) through the induction of oxidative stress. The EO was obtained by hydrodistillation and analyzed by GC-MS. To evaluate the antifungal chemosensitizing effect through induction of oxidative stress, cultures of the model yeast Saccharomyces cerevisiae ∆ycf1 were exposed to sub-inhibitory concentrations of the EO, and the expression of genes known, due be overexpressed in response to oxidative and mutagenic stress was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) method. Carvacrol and thymol were identified as the main components. The EO was effective in preventing or reducing the growth of the microorganisms tested. The gene expression profiles showed that EO promoted changes in the patterns of expression of genes involved in oxidative and mutagenic stress resistance. The combined use of the L. origanoides EO with fluconazole has been tested on Candida yeasts and the strategy resulted in a synergistic enhancement of the antifungal action of the azolic chemical product. Indeed, in association with EO, the fluconazole MICs dropped. Thus, the combinatorial use of L. origanoides EO as a chemosensitizer agent should contribute to enhancing the efficiency of conventional antifungal drugs, reducing their negative side effects.


Subject(s)
Candidiasis , Lippia , Oils, Volatile , Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lippia/chemistry , Fluconazole/pharmacology , Oxidative Stress
4.
Heliyon ; 10(8): e29063, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644857

ABSTRACT

Lippia alba (Mill.) N.E. Brown (Verbenaceae), popularly known as "erva cidreira", is one of the most used plants in Brazilian folk medicine. The species has several chemotypes and its volatile constituents have already been characterized, and present different chemical markers with known pharmacological properties, such as analgesic, sedative and antifungal properties. The objective of this study was to evaluate the anticholinesterase activity (AChE) of the essential oil of three chemotypes of Lippia alba and, by using molecular anchoring, determine the best receptor-ligand interaction energies of the main constituents present in the samples of oil. The essential oils were obtained via hydrodistillation (LA1 and LA2) and steam drag (LA3), and their volatile constituents determined using GC-MS. For the determination of anticholinesterase activity, direct bioautography and colorimetry assays based on Ellman's method were used. Molecular docking was performed using a multiple solution genetic algorithm and Merck molecular force field 94 (MMFF94) as the scoring function. In the main constituents of the oil samples, three chemotypes were identified for L. alba: LA1 is rich in citral, LA2 is rich in carvone and LA3 is rich in linalool. All L. alba chemotypes showed AChE enzyme inhibition with an IC50 of 3.57 µg/mL (LA1), 0.1 µg/mL (LA2) and 4.34 µg/mL (LA3). The molecular docking study complemented the results of the experiment and demonstrated significant interactions between the main constituents of the oils and the amino acid residues of the AChE enzyme. Irrespective of the chemotype, Lippia alba presents biotechnological potential for the discovery of anticholinesterase substances, with the chemotype LA2 (rich in carvone) being the most active.

5.
Front Pharmacol ; 15: 1336878, 2024.
Article in English | MEDLINE | ID: mdl-38362154

ABSTRACT

Background: Pogostemon heyneanus leaves infusions are relevant in ethnopharmacology for treating colds, coughs, headaches, and asthma. Purpose: The essential oil chemical composition of a Pogostemon heyneanus specimen was monthly monitored from October 2021 to July 2022 to evaluate the climatic influences on its yield and chemical composition and antinociceptive, andanti-inflammatory properties. Methods: The leaves, collected monthly over a 10-month period, were submitted to hydrodistillation. The oils obtained were analyzed by gas chromatography coupled to a mass spectrometer and gas chromatography coupled to flame ionization detector. The P. heyneanus essential oil (PhEO) was tested in vivo to evaluate its peripheral analgesic actions through the abdominal writhing test induced by acetic acid, and peripheral analgesia by tail immersion. Neurogenic and inflammatory pain were evaluated by formalin test, and acute oral toxicity of the oil was also verified. Results: PhEO presented 27 chemical constituents with the highest predominance of patchoulol (43.6%-76.9%), α-bulnesene (0.2%-12.7%), α-guaiene (0.4%-8.9%), seychellene (3.8%-5.1%) and pogostol (0.0%-8.2%). The climatic parameters insolation, humidity, rainfall, and temperature did not influence the essential oil yield or the main chemical constituents, except for pogostol, which presented a strong (r = 0.73) and statistically significant (p < 0.05) correlation with temperature. PhEO did not display toxicity at the maximum 300 mg/kg dosage. The oil showed low peripheral and central analgesic action at 100 mg/kg, while in the neurogenic and inflammatory pain inhibition tests, no actions related to PhEO were observed. In the carrageenan-induced peritonitis test, PhEO did not reduce the migration of leukocytes to the peritoneal cavity compared to the control group. Conclusion: Pogostemon heyneanus is a resistant plant to seasonal influences and a source of patchoulol. Despite ethnopharmacological indications, no in-vivo biological activities such as neurogenic or inflammatory pain were identified in the present work. So, the low influence of the climatic parameters on chemical composition can infer that the low pharmacological activity is also not subject to climatic variations, that is, it does not change due to the climate.

6.
Chem Biodivers ; 21(1): e202301082, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012088

ABSTRACT

Ethnopharmacology and botanical taxonomy are valid criteria used to selecting plants for antimalarial bioprospection purposes. Based on these two criteria, ethanol extracts of 11 plants from Santarém City vicinities, Western Pará State, Brazilian Amazonia, had their in vitro antiplasmodial activity against chloroquine-resistant Plasmodium falciparum (W2 clone) assessed by the PfLDH method, whereas their cytotoxicity to HepG2-A16 cells was assessed through MTT assay. Acmella oleracea, Siparuna krukovii and Trema micrantha extracts disclosed the highest rate of parasite growth inhibition (90 %) in screening tests. In vivo antimalarial assays were conducted with these extracts against Plasmodium berghei (NK 65 strain) infected mice. Inhibition rate of parasite multiplication ranged from 41.4 % to 60.9 % at the lowest extract dose (25 mg/kg). HPLC-ESI-HRMS2 analyses allowed the putative identification of alkylamides, fatty acids, flavonoid glycosides and alkaloids in ethanol extracts deriving from these three plant species. Results pointed towards A. oleracea flowers ethanol extract as the most promising potential candidate to preclinical studies aiming the development of antimalarial phytomedicine.


Subject(s)
Antimalarials , Malaria , Mice , Animals , Antimalarials/pharmacology , Malaria/drug therapy , Malaria/parasitology , Brazil , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plants , Ethanol , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plasmodium falciparum
7.
J Ethnopharmacol ; 322: 117595, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38122914

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM: This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY: For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS: A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION: Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Plants, Medicinal , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Brazil , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Malaria/drug therapy , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum
8.
J Ethnopharmacol ; 322: 117643, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38135233

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pectis elongata, a herbaceous species that is known in northern Brazil as "cominho" or "limãozinho", is traditionally used in the region for the treatment of fevers, colds, hypotension, genitourinary and gastric disorders, and pain. AIM OF THE STUDY: Determine the chemical composition and acute oral toxicity and evaluate whether Pectis elongata essential oil (PeEO) has antiedema and antinociceptive activity. MATERIALS AND METHODS: The chemical composition was determined using gas chromatography coupled to mass spectrometry (GC/MS) and the degree of toxicity determined by the LD50. The antiedema and antinociceptive potential was evaluated via the λ-carrageenan-induced paw edema test and formalin test, respectively. RESULTS: Citral (geranial and neral) was characterized as a major component of the PeEO, representing 89% of the total identified compounds. According to OECD criteria (2002), the EO was considered non-toxic since it presented LD50 values over 2000 mg kg-1. Its antiedema potential was observed at doses of 200 and 400 mg kg-1 (p ≤ 0.05). At a dose of 400 mg kg-1, PeEO also showed antinociceptive potential (p ≤ 0.05), both in the neurogenic phase and in the inflammatory phase. CONCLUSIONS: PeEO, which is rich in citral, did not induce any characteristic signs of acute oral toxicity and was also efficient in reducing carrageenan-induced paw edema, in addition to presenting antinociceptive potential and acting on both central and peripheral pain. It is thus a promising candidate for the development of a new herbal medicine with anti-inflammatory and analgesic action.


Subject(s)
Acyclic Monoterpenes , Asteraceae , Oils, Volatile , Oils, Volatile/therapeutic use , Oils, Volatile/toxicity , Brazil , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics/chemistry , Pain/drug therapy , Pain/chemically induced , Carrageenan , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Edema/chemically induced , Edema/drug therapy
9.
Molecules ; 28(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005295

ABSTRACT

Aniba canelilla (Kunth) Mez essential oil has many biological activities due to its main compound 1-nitro-2-phenylethane (1N2F), followed by methyleugenol, a carcinogenic agent. This study analyzed the influence of seasonality on yields, antioxidant capacity, and 1N2F content of A. canelilla leaf and twig essential oils. Essential oils (EOs) were extracted with hydrodistillation and analyzed with gas chromatography coupled to mass spectrometry and a flame ionization detector. Antioxidant capacity was measured using the free radical scavenging method (DPPH). Chemometric analyses were carried out to verify the influence of climatic factors on the production and composition of EOs. 1-Nitro-2-phenylethane was the major constituent in A. canelilla EOs throughout the seasonal period (68.0-89.9%); methyleugenol was not detected. Essential oil yields and the 1N2F average did not show a statistically significant difference between the dry and rainy seasons in leaves and twigs. Moderate and significant correlations between major compounds and climate factor were observed. The twig oils (36.0 ± 5.9%) a showed greater antioxidant capacity than the leaf oils (20.4 ± 5.0%). The PCA and HCA analyses showed no statistical differences between the oil samples from the dry and rainy seasons. The absence of methyleugenolin in all months of study, described for the first time, makes this specimen a reliable source of 1N2F.


Subject(s)
Lauraceae , Oils, Volatile , Oils, Volatile/chemistry , Lauraceae/chemistry , Seasons , Antioxidants/pharmacology , Gas Chromatography-Mass Spectrometry , Plant Leaves
10.
Molecules ; 27(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458612

ABSTRACT

Eugenia patrisii Vahl is a native and non-endemic myrtaceous species of the Brazilian Amazon. Due to few botanical and phytochemical reports of this species, the objective of the present work was to evaluate the seasonal variability of their leaf essential oils, performed by GC and GC-MS and chemometric analysis. The results indicated that the variation in oil yields (0.7 ± 0.1%) could be correlated with climatic conditions and rainy (R) and dry seasons (D). (E)-caryophyllene (R = 17.1% ± 16.0, D = 20.2% ± 17.7) and caryophyllene oxide (R = 30.1% ± 18.4, D = 14.1% ± 19.3) are the major constituents and did not display significant differences between the two seasons. However, statistically, a potential correlation between the main constituents of E. patrisii essential oil and the climatic parameters is possible. It was observed that the higher temperature and insolation rates and the lower humidity rate, which are characteristics of the dry season, lead to an increase in the (E)-caryophyllene contents, while lower temperature and insolation and higher humidity, which occur in the rainy season, lead to an increase in the caryophyllene oxide content. The knowledge of variations in the E. patrisii essential oil composition could help choose the best plant chemical profile for medicinal purposes.


Subject(s)
Eugenia , Oils, Volatile , Brazil , Eugenia/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Seasons
11.
Toxins (Basel) ; 13(11)2021 11 18.
Article in English | MEDLINE | ID: mdl-34822598

ABSTRACT

Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.


Subject(s)
Bothrops , Crotalid Venoms/chemistry , Proteins/chemistry , Animals , Brazil , Ecosystem , Female , Male , Protein Isoforms , Proteins/isolation & purification
12.
Molecules ; 26(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208560

ABSTRACT

Pectis elongata is found in the northern and northeastern regions of Brazil. It is considered a lemongrass due to its citric scent. The remarkable citral content and the wide antimicrobial properties and bioactive features of this terpene make this essential oil (EO) eligible for several industrial purposes, especially in cosmetics and phytotherapics. However, to address the problems regarding citral solubility, nano-emulsification is considered a promising strategy thanks to its improved dispersability. Thus, in this paper we propose a low-energy approach for the development of citral-based nano-emulsions prepared with P. elongata EO. The plant was hydrodistillated to produce the EO, which was characterized with a gas chromatograph coupled to mass spectrometry. The nano-emulsion prepared by a non-heated water titrating (low-energy) method was composed of 5% (w/w) EO, 5% (w/w) non-ionic surfactants and 90% (w/w) deionized water and was analyzed by dynamic light scattering. Levels of citral of around 90% (neral:geranial-4:5) were detected in the EO and no major alteration in the ratio of citral was observed after the nano-emulsification. The nano-emulsion was stable until the 14th day (size around 115 nm and polydispersity index around 0.2) and no major alteration in droplet size was observed within 30 days of storage. Understanding the droplet size distribution as a function of time and correlating it to concepts of compositional ripening, as opposing forces to the conventional Ostwald ripening destabilization mechanism, may open interesting approaches for further industrial application of novel, low-energy, ecofriendly approaches to high citral essential oil-based nano-emulsions based on lemongrass plants.


Subject(s)
Acyclic Monoterpenes/isolation & purification , Emulsions/chemistry , Oils, Volatile/isolation & purification , Acyclic Monoterpenes/chemistry , Brazil , Cymbopogon/chemistry , Gas Chromatography-Mass Spectrometry , Monoterpenes/chemistry , Oils, Volatile/chemistry , Plant Extracts/isolation & purification , Surface-Active Agents/chemistry , Water/chemistry
13.
Article in English | LILACS-Express | LILACS | ID: biblio-1148220

ABSTRACT

A new consumer profile for pharmaceutical and cosmetic products has motivated research into natural raw materials in the development of "green" products such as herbal medicines and biocosmetics. However, various limitations have been encountered in the marketing of these products, for example the quality control of the natural raw materials used by the industrial market. This study aims to evaluate the sensory and physicochemical parameters of murumuru (Astrocaryum murumuru Mart.), bacuri (Platonia insignis Mart.), tucuma (Astrocaryum vulgare Mart.), and ucuuba (Virola sebifera Aubl.) butters for applications in pharmaceutical and cosmetic bioproducts. The acidity and saponification as well as the iodine and peroxide indexes were evaluated and fatty acid profiles for the samples obtained by GC-MS. The sensory properties of the butters showed the appearance of solid to soft cream, color (yellow, brown, buttercup, and ochre), and characteristic odor. The melting temperatures of all butters ranged between 31 ºC and 49 °C. The acidity, saponification, iodine and peroxide indexes for the butters were of 5.82 ­ 17.73 mg (NaOH or KOH) g−1, 181.10 ­ 573.55 mg KOH g−1, 2.78 ­ 44.96 gl2 100 g−1, and 1.39 ­ 9.30 meq kg−1, respectively. From analyses of the fatty acid profiles, the major components identified were lauric acid in murumuru (40%) and ucuuba butters (73%), myristic acid in tucuma butter (53%), and palmitic acid in bacuri butter (42%). In general, the results of the analyses differed from the specifications of the supplier reports and official compendia. These findings highlight the importance of quality control in natural raw materials to ensure their functionality in pharmaceutical and cosmetic bioproducts.

14.
Toxins, v. 13, n. 11, 814, nov. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4016

ABSTRACT

Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.

15.
Molecules ; 26(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375652

ABSTRACT

Aniba rosiodora has been exploited since the end of the nineteenth century for its essential oil, a valuable ingredient in the perfumery industry. This species occurs mainly in Northern South America, and the morphological similarity among different Aniba species often leads to misidentification, which impacts the consistency of products obtained from these plants. Hence, we compared the profiles of volatile organic compounds (essential oils) and non-volatile organic compounds (methanolic extracts) of two populations of A. rosiodora from the RESEX and FLONA conservation units, which are separated by the Tapajós River in Western Pará State. The phytochemical profile indicated a substantial difference between the two populations: samples from RESEX present α-phellandrene (22.8%) and linalool (39.6%) in their essential oil composition, while samples from FLONA contain mainly linalool (83.7%). The comparison between phytochemical profiles and phylogenetic data indicates a clear difference, implying genetic distinction between these populations.


Subject(s)
Lauraceae/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Acyclic Monoterpenes/chemistry , Brazil , Cyclohexane Monoterpenes/chemistry , Forests , Lauraceae/genetics , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Phylogeny
16.
Drug Deliv Transl Res ; 10(6): 1764-1770, 2020 12.
Article in English | MEDLINE | ID: mdl-32876880

ABSTRACT

Oil in water nano-emulsions are drug delivery systems constituted by liquid lipophilic nano-droplets dispersed through the external aqueous phase, often reaching the kinetic stability with surfactant as stabilizers. Essential oils can be the oily phase or the source of bioactive compounds. In this study, the essential oil of Aeollanthus suaveolens-a plant used in folk medicine due to its psychopharmacological effects-was used for preparation of fine nano-emulsions by a low-energy titrating method. Monodisperse small nano-droplets (ca. 70 nm; PdI 0.200) were assembled by using blends of non-ionic surfactants, indicating modulation on surfactant system lead to altering the physical property. In a separate set of experiments, we investigated the role of this modulation on biological properties of the optimal nano-emulsion. The zebrafish embryos were more susceptible to the nano-emulsion than the bulk essential oil, showing the improved bioactivity due to nano-sizing. Therefore, adult zebrafish was treated, and paralysis was observed in the groups treated with the nano-emulsion, being this finding in accordance with hypnosis. At the same essential oil dose, another behavior was observed, suggesting that expected dose-dependent effects associated to sedative-hypnotics can be achieved by nano-sizing of psychoactive essential oils. This paper contributes to the state-of-art drug delivery systems by opening perspectives for novel sedative-hypnotics nano-emulsified essentials oils that can reach hypnotic effects at considerably lower dose, when compared with bulk materials, being useful for further completed dose-response studies.Graphical abstract.


Subject(s)
Lamiaceae/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Animals , Emulsions , Nanotechnology , Oils, Volatile/chemistry , Plant Oils/chemistry , Surface-Active Agents , Water , Zebrafish
17.
J Fish Dis ; 43(12): 1497-1504, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32924179

ABSTRACT

This study investigated the acute toxicity (LC50-24 hr ) effects of the essential oil of Cymbopogon citratus for adult Argulus sp. and Dolops discoidalis, before and during oviposition. In vitro acute toxicity (LC50-24 hr ) was tested using 20, 40, 60, 80, 100, 120, 140 and 160 µg/L of C. citratus essential oil, and two control groups (one with cultivation tank water and one with cultivation tank water + alcohol) were used. Specimens of Argulus sp. and D. discoidalis submitted to acute toxicity were evaluated using histological procedures. The major chemical compounds of C. citratus essential oil were geranial (47.5%), neral (35.6%) and myrcene (6.7%). The LC50-24 hr for Argulus sp. adults was 67.97 µg/L, while for D. discoidalis it was 59.55 µg/L. In the oviposition of both species of argulids, maximum mortality began with treatments of 140 µg/L, while the LC50-24 hr for Argulus sp. and D. discoidalis was 83.98 µg/L and 82.48 µg/L, respectively. In both argulid species exposed to C. citratus essential oil, morphological alterations were observed only in the eyes, and they occurred in the ommatidium and rhabdomeres and were dependent on the concentration of C. citratus essential oil and the parasite species.


Subject(s)
Arguloida/drug effects , Cymbopogon/chemistry , Oils, Volatile/toxicity , Animals , Arguloida/anatomy & histology , Compound Eye, Arthropod/drug effects , Oils, Volatile/chemistry , Oviposition/drug effects
18.
Toxicon ; 184: 99-108, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32522619

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the region of Western Pará, Amazonia, Brazil, Philodendron megalophyllum is widely used for the treatment of envenomations caused by bites from venomous snakes. The traditional use of plants is usually done through oral administration of an infusion (decoction) soon after the bite occurs. The efficiency of aqueous extracts of P. megalophyllum was demonstrated for blocking the activity of the venom of Bothrops sp., but only for a pre-incubation protocol (venom:extract), which fails to simulate the real form of use of this species. In this context, the objective of this research was to evaluate the anti-snakebite potential of the aqueous extract of P. megalophyllum to inhibit for the biological activity induced by Bothrops atrox venom (BaV) using traditional treatment methods. MATERIAL AND METHODS: Initially, an aqueous extract using the stem of P. megalophyllum (AEPm) was prepared following the standard procedure used by the residents of the rural area along the Tapajós River (Eixo Forte region) in Santarém, PA, Brazil. The phytochemical profile of AEPm was conducted using thin layer chromatography (TLC) and phenolic compounds were quantified through colorimetric trials. The cytotoxicity of AEPm was evaluated using the MRC-5 human fibroblast line, and the antioxidant potential was measured using DPPH methods and cell culture. AEPm antimicrobial action was evaluated by the 96-well plate microdilution and the minimum inhibitory concentration (MIC) methods using 18 types of microorganisms including bacteria that are present in the oral cavity of snakes. AEPm blocking potential was tested against BaV activity in vitro (fibrinolytic) and in vivo (defibrinating and hemorrhagic). In order to test for an interaction between BaV and AEPm SDS-PAGE electrophoresis was conducted. RESULTS: The presence of coumarins, fatty acids, and hydrolysable tannins were detected in the AEPm. The colorimetric trials showed that AEPm had a high concentration of condensed tannins (20.1 ± 1.2%). The potential of AEPm for blocking of hemorrhagic and fibrinolytic activity of BaV showed a maximum reduction of 86.1% and 96.5%, respectively, for the pre-incubation protocol (1:10, venom:extract). However, when the extract was administered orally there was no significant blocking of these activities. The interaction of BaV and AEPm showed a modification of the profile of proteic bands when compared to the pattern of bands obtained from the BaV alone. The AEPm was not considered toxic, demonstrated antioxidant activity, and was capable of reducing the growth of 10 of the 18 studied microorganisms. CONCLUSION: Although the stem of P. megalophyllum is indicated by traditional medicine techniques as effective against snakebites, the extract, when tested orally was not able to significantly inhibit (p ˃ 0.05) hemorrhage and defibrinating activity induced by the B. atrox venom. On the other hand, the extract yielded a promising result with respect to antioxidant and antimicrobial potential, and after further studies it could be used as a complementary treatment for localized action and secondary infections that frequently occur with snakebites from the genus of Bothrops sp.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Plant Extracts/therapeutic use , Snake Bites/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antivenins/therapeutic use , Crotalid Venoms , Hemorrhage/drug therapy , Humans , Medicine, Traditional , Philodendron , Plant Extracts/pharmacology
19.
Biomolecules ; 10(2)2020 02 19.
Article in English | MEDLINE | ID: mdl-32092893

ABSTRACT

The essential oil of Eugenia uniflora has been attributed anti-depressive, antinociceptive, antileishmanial, larvicidal, antioxidant, antibacterial, and antifungal activities. It is known that the cultivation of this plant can be affected by seasonality, promoting alteration in the oil composition and its biological activities. This study aims to perform the annual evaluation of the curzerene-type oil of E. uniflora and determine its antioxidant activity. The oil yield from the dry season (1.4 ± 0.6%) did not differ statistically from that of the rainy season (1.8 ± 0.8%). Curzerene, an oxygenated sesquiterpene, was the principal constituent, and its percentage showed no significant difference between the two periods: dry (42.7% ± 6.1) and rainy (40.8 ± 5.9%). Principal component and hierarchical cluster analyses presented a high level of similarity between the monthly samples of the oils. Also, in the annual study, the yield and composition of the oils did not present a significant correlation with the climatic variables. The antioxidant activity of the oils showed inhibition of DPPH radicals with an average value of 55.0 ± 6.6%. The high curzerene content in the monthly oils of E. uniflora suggests their potential for use as a future phytotherapeutic alternative.


Subject(s)
Antioxidants/chemistry , Eugenia/chemistry , Oils, Volatile/chemistry , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Seasons , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology
20.
Toxicon, v. 184, p. 99-108, set. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3062

ABSTRACT

Ethnopharmacological relevance In the region of Western Pará, Amazonia, Brazil, Philodendron megalophyllum is widely used for the treatment of envenomations caused by bites from venomous snakes. The traditional use of plants is usually done through oral administration of an infusion (decoction) soon after the bite occurs. The efficiency of aqueous extracts of P. megalophyllum was demonstrated for blocking the activity of the venom of Bothrops sp., but only for a pre-incubation protocol (venom:extract), which fails to simulate the real form of use of this species. In this context, the objective of this research was to evaluate the anti-snakebite potential of the aqueous extract of P. megalophyllum to inhibit for the biological activity induced by Bothrops atrox venom (BaV) using traditional treatment methods. Material and methods Initially, an aqueous extract using the stem of P. megalophyllum (AEPm) was prepared following the standard procedure used by the residents of the rural area along the Tapajós River (Eixo Forte region) in Santarém, PA, Brazil. The phytochemical profile of AEPm was conducted using thin layer chromatography (TLC) and phenolic compounds were quantified through colorimetric trials. The cytotoxicity of AEPm was evaluated using the MRC-5 human fibroblast line, and the antioxidant potential was measured using DPPH methods and cell culture. AEPm antimicrobial action was evaluated by the 96-well plate microdilution and the minimum inhibitory concentration (MIC) methods using 18 types of microorganisms including bacteria that are present in the oral cavity of snakes. AEPm blocking potential was tested against BaV activity in vitro (fibrinolytic) and in vivo (defibrinating and hemorrhagic). In order to test for an interaction between BaV and AEPm SDS-PAGE electrophoresis was conducted. Results The presence of coumarins, fatty acids, and hydrolysable tannins were detected in the AEPm. The colorimetric trials showed that AEPm had a high concentration of condensed tannins (20.1 ± 1.2%). The potential of AEPm for blocking of hemorrhagic and fibrinolytic activity of BaV showed a maximum reduction of 86.1% and 96.5%, respectively, for the pre-incubation protocol (1:10, venom:extract). However, when the extract was administered orally there was no significant blocking of these activities. The interaction of BaV and AEPm showed a modification of the profile of proteic bands when compared to the pattern of bands obtained from the BaV alone. The AEPm was not considered toxic, demonstrated antioxidant activity, and was capable of reducing the growth of 10 of the 18 studied microorganisms. Conclusion Although the stem of P. megalophyllum is indicated by traditional medicine techniques as effective against snakebites, the extract, when tested orally was not able to significantly inhibit (p > 0.05) hemorrhage and defibrinating activity induced by the B. atrox venom. On the other hand, the extract yielded a promising result with respect to antioxidant and antimicrobial potential, and after further studies it could be used as a complementary treatment for localized action and secondary infections that frequently occur with snakebites from the genus of Bothrops sp

SELECTION OF CITATIONS
SEARCH DETAIL
...